Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades PK–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.

- Ask questions based on observations to find more information about the designed world. (P-PS1-1)
- Planning and carrying out investigations to answer questions or test solutions to problems in PK–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - With guidance, plan and conduct an investigation in collaboration with peers. (P-PS2-1), (P-PS4-1)

Analyzing and Interpreting Data

Analyzing data in PK–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

- Record information (observations, thoughts, and ideas). (P-PS1-1)
- Analyze data from tests of an object or tool to determine if it works as intended. (P-PS2-1)

Disciplinary Core Ideas

P.S1.A: Structure and Properties of Matter

- (NYSED) Different kinds of matter exist and many of them can be either solid or liquid. Matter can be described, categorized, and sorted by its observable properties. (P-PS1-1)

P.S2.A: Forces and Motion

- Pushes and pulls can have different strengths and directions. (P-PS1-1)
- Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (P-PS2-1)

P.S3.C: Relationship Between Energy and Forces

- (NYSED) A push or a pull may cause stationary objects to move, and a stronger push or pull in the same or opposite direction makes an object in motion speed up or slow down more quickly. (secondary to P-PS2-1)

P.S4.A: Wave Properties

- Sound can make matter vibrate, and vibrating matter can make sound. (P-PS4-1)

Crosscutting Concepts

Patterns
- • Simple tests can be designed to gather evidence to support or refute student ideas about causes. (P-PS2-1), (P-PS4-1)

Causation and Effect
- • Simple tests can be designed to gather evidence to support or refute student ideas about causes. (P-PS2-1), (P-PS4-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

P. Life Sciences

Students who demonstrate understanding can:

P-LS1-1. Observe familiar plants and animals (including humans) and describe what they need to survive. [Clarification Statement: Emphasis should be on determining what a variety of living organisms need to live and grow.]

P-LS1-2. Plan and conduct an investigation to determine how familiar plants and/or animals use their external parts to help them survive in the environment. [Clarification Statement: Emphasis should be on the relationships between the physical and living environment. Examples of external parts could include roots, stems, leaves for plants and eyes, ears, mouth, arms, legs for animals.]

P-LS3-1. Develop a model to describe that some young plants and animals are similar to, but not exactly like, their parents. [Clarification Statement: Emphasis is on observation and pictorial representations of familiar plants and animals.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models

Modeling in PK-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.

- Compare models to identify common features and differences. (P-LS1-1)
- Develop a simple model based on evidence to represent a proposed object or tool. (P-LS3-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in PK-2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- With guidance, plan and conduct an investigation in collaboration with peers. (P-LS1-2)

Analyzing and Interpreting Data

Analyzing data in PK-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

- Record information (observations, thoughts, and ideas). (P-LS1-1)
- Analyze data from tests of an object or tool to determine if it works as intended. (P-PS1-2)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in PK-2 builds on prior experiences and uses observations and texts to communicate new information.

- Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas. (P-LS1-1)

Disciplinary Core Ideas

LS1-A: Structure and Function

- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water, and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (P-LS1-2)

LS1-C: Organization for Matter and Energy Flow in Organisms

- (NYSED) All animals need food, air, and water in order to live, grow, and thrive. Animals obtain food from plants or from other animals. Plants need water, air, and light to live, grow, and thrive. (P-LS1-1)

LS1-D: Information Processing

- Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (P-LS1-2)

LS3-A: Inheritance of Traits

- (NYSED) Some young animals are similar to, but not exactly, like their parents. Some young plants are also similar to, but not exactly, like their parents. (P-LS3-1)

LS3-B: Variation of Traits

- Individuals of the same kind of plant or animal are recognizable as similar but can also vary in many ways. (P-LS3-1)

Crosscutting Concepts

Patterns

- Patterns in the natural and human designed world can be observed and used as evidence. (P-LS1-1), (P-LS3-1)

Cause and Effect

- Events have causes that generate observable patterns. (P-LS1-2)

Systems and System Models

- Systems in the natural and designed world have parts that work together. (P-LS1-2)

Structure and Function

- The shape and stability of structures of natural and designed objects are related to their function(s). (P-LS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the “Disciplinary Core Ideas” section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

P-ESS1-1. Observe and describe the apparent motions of the Sun, moon, and stars to recognize predictable patterns.
[Clarification Statement: Examples of patterns could include that the Sun and moon appear to move across the sky in a predictable pathway; day and night follow predictable patterns; seasons change in a cyclical pattern (e.g. summer follows spring, autumn follows summer); the moon's shape appears to change in a cyclical pattern; and stars other than our Sun can be visible at night depending on local weather conditions.]

P-ESS2-1. Ask questions, make observations, and collect and record data using simple instruments to recognize patterns about how local weather conditions change daily and seasonally.
[Clarification Statement: Emphasis is on daily weather conditions recorded over a period of time and how those conditions impact student activities and what clothes they wear. Examples of local weather conditions could include cloud cover (e.g., partly cloudy, cloudy, foggy), precipitation (no precipitation, snow, rain), wind (no wind, some wind, strong wind), and temperature (cold, cool, warm, hot).]
[Assessment Boundary: Assessment is limited to qualitative measures of local weather conditions.]

P-PS3-1. Plan and conduct an investigation to determine the effect of sunlight on Earth's surface.
[Clarification Statement: Examples of effects could include illumination, shadows casted, and the warming effect on living organisms and nonliving things.]
[Assessment Boundary: Assessment of effects is limited to relative measures: e.g. warm/cool, bright/dark.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*.

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th>PS3.B: Conservation of Energy and Energy Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sunshine warms Earth's surface. (P-PS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PS4.B: Electromagnetic Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Objects can be seen if light is available to illuminate them or if they give off their own light. (P-PS3-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS1.A: The Universe and its Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (P-ESS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS1.B: Earth and the Solar System</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (P-ESS1-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS2.D: Weather and Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (P-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESS3.B: Natural Hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (P-ESS2-1)</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Asking Questions and Defining Problems

- Ask questions based on observations to find more information about the designed world. (P-ESS2-1)

Planning and Carrying Out Investigations

- Analyze and interpret data
- Obtain data from tests of an object or tool to determine if it works as intended.
- With prompting and support, make observations (firsthand or from media) to collect data that can be used to make comparisons. (P-ESS2-1)
- With guidance, plan and conduct an investigation in collaboration with peers. (P-PS3-1)
- Make observations (firsthand or from media) to collect data that can be used to make comparisons. (P-ESS2-1)

Disciplinary Core Ideas

- PS3.B: Conservation of Energy and Energy Transfer
- PS4.B: Electromagnetic Radiation
- ESS1.A: The Universe and its Stars
- ESS1.B: Earth and the Solar System
- ESS2.D: Weather and Climate
- ESS3.B: Natural Hazards

Crosscutting Concepts

Patterns
- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (P-ESS1-1),(P-ESS2-1)

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (P-ESS2-1),(P-PS3-1)

Connections to Nature of Science

- The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas* unless it is preceded by (NYSED).
Students who demonstrate understanding can:

K-PS1-1. Plan and conduct an investigation to test the claim that different kinds of matter exist as either solid or liquid, depending on temperature. [Clarification Statement: Emphasis should be on solids and liquids at a given temperature and that a solid may be a liquid at a higher temperature and a liquid may be a solid at a lower temperature.] [Assessment Boundary: Only a qualitative description of temperature, such as hot, warm, and cool, is expected]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - With guidance, plan and conduct an investigation in collaboration with peers. (K-PS1-1)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 - Record information (observations, thoughts, and ideas). (K-PS1-1)
 - Analyze data from tests of an object or tool to determine if it works as intended. (K-PS1-1)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter
- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (K-PS1-1)

Crosscutting Concepts

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (K-PS1-1)

Energy and Matter
- Students observe objects may break into smaller pieces, be put together into larger pieces, or change shapes. (K-PS1-1)

Connections to Nature of Science:
- Scientists use different ways to study the world. (K-PS1-1)

Connections to other DCIs in kindergarten: K.ETS1.A (K-PS2-2); K.ETS1.B (K-PS2-2)

Common Core State Standards Connections:
- **ELA/Literacy –** RI.K.1, W.K.7, SL.K.3
 - With prompting and support, ask and answer questions about key details in a text. (K-PS1-1)
 - Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-PS1-1)

- **Mathematics –** MP.2, K.MD.A.1, K.MD.A.2
 - Reason abstractly and quantitatively. (K-PS1-1)
 - Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object. (K-PS1-1)
 - Directly compare two objects with a measurable attribute in common, to see which object has "more of" or "less of" the attribute, and describe the difference. (K-PS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.

- With guidance, plan and conduct an investigation in collaboration with peers. (K-PS2-1)

Analyzing and Interpreting Data
Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.

- Analyze data from tests of an object or tool to determine if it works as intended. (K-PS2-2)

Disciplinary Core Ideas

PS2.A: Forces and Motion
- Pushes and pulls can have different strengths and directions. (K-PS2-1),(K-PS2-2)
- Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. (K-PS2-1),(K-PS2-2)

PS2.B: Types of Interactions
- When objects touch or collide, they push on one another and can change motion. (K-PS2-1)

PS3.C: Relationship Between Energy and Forces
- (NYSED) A push or a pull may cause stationary objects to move, and a stronger push or pull in the same or opposite direction makes an object in motion speed up or slow down more quickly. (secondary to K-PS2-1)

ETS1.A: Defining Engineering Problems
- A situation that people want to change or create can be approached as a problem to be solved through engineering. Such problems may have many acceptable solutions. (secondary to K-PS2-2)

Crosscutting Concepts

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (K-PS2-1),(K-PS2-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Science and Engineering Practices

Developing and Using Models
- Modeling in K–2 builds on prior experiences and progresses to include using and developing models (e.g., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 - Use a model to represent relationships in the natural world. (K-ESS3-1)

Analyzing and Interpreting Data
- Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
 - Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-LS1-1)

Engaging in Argument from Evidence
- Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).
 - Construct an argument with evidence to support a claim. (K-ESS2-2)

Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.
 - Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas. (K-ESS3-3)

Disciplinary Core Ideas

LS1: Causation and Effect
- **LS1.C:** Organization for Matter and Energy Flow in Ecosystems
 - (NYSED) All animals need food, air, and water in order to live, grow, and thrive. Animals obtain food from plants or from other animals. Plants need water, air, and light to live, grow, and thrive. (K-LS1-1)

ESS2: Systems in the Natural and Designed World
- **ESS2.E:** Biogeology
 - Plants and animals can change their environment. (K-ESS2-2)

- **ESS3.A:** Natural Resources
 - Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. (K-ESS3-1)

- **ESS3.C:** Human Impacts on Earth Systems
 - Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (secondary to K-ESS2-2)(K-ESS3-3)

- **ETS1.B:** Developing Possible Solutions
 - Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem's solutions to other people. (secondary to K-ESS3-3)

Crosscutting Concepts

Patterns
- **Patterns** in the natural and human designed world can be observed and used as evidence. (K-LS1-1)

Causation and Effect
- **Causation and Effect** events have causes that generate observable patterns. (K-ESS3-3)

Systems and System Models
- **Systems and System Models** in the natural and designed world have parts that work together. (K-ESS2-2),(K-ESS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
K. Weather and Climate

Students who demonstrate understanding can:

K-ESS2-1. Use and share observations of local weather conditions to describe patterns over time. [Clarification Statement: Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.] [Assessment Boundary: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]

K-ESS3-2. Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.* [Clarification Statement: Emphasis is on local forms of severe weather and local resources available for preparedness measures.]

K-PS3-1. Make observations to determine the effect of sunlight on Earth’s surface. [Clarification Statement: Examples of Earth’s surface could include sand, soil, rocks, and water] [Assessment Boundary: Assessment of temperature is limited to relative measures such as warmer/cooler.]

**K-PS3-2. Use tools and materials to design and build a structure that will reduce the warming effect of sunlight on an area.* [Clarification Statement: Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]*

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Asking Questions and Defining Problems

- Asking questions and defining problems in grades K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested.
 - Ask questions based on observations to find more information about the designed world. (K-ESS3-2)

Planning and Carrying Out Investigations

- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - Make observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (K-ESS2-1)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
 - Use tools and materials provided to design and build a device that solves a specific problem or a solution to a specific problem. (K-PS3-2)

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.
 - Read grade-appropriate texts and/or use media to obtain scientific information to describe patterns in the natural world. (K-ESS2-2)

Disciplinary Core Ideas

PS3.B: Conservation of Energy and Energy Transfer

- Sunlight warms Earth’s surface. (K-PS3-1),(K-ESS3-2)
- Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-1)

ESS2.D: Weather and Climate

- Weather is the combination of sunlight, wind, snow or rain, and temperature in a particular region at a particular time. People measure these conditions to describe and record the weather and to notice patterns over time. (K-ESS2-1)

ESS3.B: Natural Hazards

- Some kinds of severe weather are more likely than others in a given region. Weather scientists forecast severe weather so that the communities can prepare for and respond to these events. (K-ESS3-2)

ETS1.A: Defining and Delimiting an Engineering Problem

- Asking questions, making observations, and gathering information are helpful in thinking about problems. (secondary to K-ESS3-2)

Connections to Nature of Science

Science and Engineering Practices

Mathematics

- Understand and apply concepts of number sense and operations. (K-ESS2-2)
- Model with mathematics. (K-ESS2-1),(K-ESS3-2)
- Use and apply concepts of measurement. (K-ESS2-2)
- Use digital tools and resources to gather and display data to identify patterns and trends. (K-ESS3-2)

Crosscutting Concepts

Patterns

- Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (K-ESS2-1)

Cause and Effect

- Events have causes that generate observable patterns. (K-PS3-1),(K-PS3-2),(K-ESS3-2)

Connections to Technology, Engineering, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- People depend on various technologies in their lives; human life would be very different without technology. (K-ESS3-2)

New York State P-12 Science Learning Standards

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
1. Waves: Light and Sound

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Plan and conduct investigations collaboratively to produce data to serve as the basis for evidence to answer a question. (1-PS4-1),(1-PS4-3)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena (1-PS4-2)
- Use tools and materials provided to design a device that solves a specific problem. (1-PS4-4)

Disciplinary Core Ideas

PS4.A: Wave Properties
- Objects can be seen if light is available to illuminate them or if they give off their own light. (1-PS4-2)
- Some materials allow light to pass through them, others allow only some light through and others block all the light and create a dark shadow on any surface beyond them, where the light cannot reach. Mirrors can be used to redirect a light beam. (Boundary: The idea that light travels from place to place is developed through experiences with light sources, mirrors, and shadows, but no attempt is made to discuss the speed of light.) (1-PS4-3)

PS4.B: Electromagnetic Radiation
- Use appropriate tools strategically. (1-PS4-4)

PS4.C: Information Technologies and Instrumentation
- People also use a variety of devices to communicate (send and receive information) over long distances. (1-PS4-4)

Crosscutting Concepts

Cause and Effect
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (1-PS4-1),(1-PS4-2),(1-PS4-3)

Connections to Engineering, Technology, and Applications of Science
- Influence of Engineering, Technology, and Science, on Society and the Natural World
 - People depend on various technologies in their lives; human life would be very different without technology. (1-PS4-4)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

1. Structure, Function, and Information Processing

Students who demonstrate understanding can:

1-LS1-1. **Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.**

 [Clarification Statement: Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]

1-LS1-2. **Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.**

 [Clarification Statement: Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).]

1-LS3-1. **Make observations to construct an evidence-based account that some young plants and animals are similar to, but not exactly like, their parents.**

 [Clarification Statement: Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.

- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (1-LS1-1)
- Use materials to design a device that solves a specific problem or a solution to a specific problem. (1-LS1-1)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in K–2 builds on prior experiences and uses observations and texts to communicate new information.

- Read grade-appropriate texts and use media to obtain scientific information to determine patterns in the natural world. (1-LS1-2)

Disciplinary Core Ideas

LS1: Structure and Function

- All organisms have external parts. Different animals use their body parts in different ways to see, hear, grasp objects, protect themselves, move from place to place, and seek, find, and take in food, water and air. Plants also have different parts (roots, stems, leaves, flowers, fruits) that help them survive and grow. (1-LS1-1)

LS1.B: Growth and Development of Organisms

- Adult plants and animals can have young. In many kinds of animals, parents and the offspring themselves engage in behaviors that help the offspring to survive. (1-LS1-2)

LS1.D: Information Processing

- Animals have body parts that capture and convey different kinds of information needed for growth and survival. Animals respond to these inputs with behaviors that help them survive. Plants also respond to some external inputs. (1-LS1-1)

Common Core State Standards Connections:

- RI.1.1: Ask and answer questions about key details in a text. (1-LS1-2), (1-LS3-1)
- RI.1.2: Identify the main topic and retell key details of a text. (1-LS1-2)
- RI.1.10: With prompting and support, read informational texts appropriately complex for grade. (1-LS1-2)
- W.1.7: Participate in shared research and writing projects (e.g., explore a number of "how-to" books on a given topic and use a sequence of instructions). (1-LS1-1), (1-LS3-1)
- W.1.8: With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-LS3-1)

Mathematics –

- MP.2: Reason abstractly and quantitatively. (1-LS3-1)
- MP.5: Use appropriate tools strategically. (1-LS3-1)

1.NBT.B.3

- Compare two-digit numbers based on the meanings of the tens and one digits, recording the results of comparisons with the symbols >, =, and <. (1-LS1-2)

1.NBT.C.4

- Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning uses. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten. (1-LS1-2)

1.NBT.C.6

- Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. (1-LS1-2)

1.MD.A.1

- Order three objects by length; compare the lengths of two objects indirectly by using a third object. (1-LS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
1. Space Systems: Patterns and Cycles

Students who demonstrate understanding can:

1-ESS1-1. **Use observations of the Sun, moon, and stars to describe patterns that can be predicted.** [Clarification Statement: Examples of patterns could include that the Sun and moon appear to rise along the eastern horizon, move in a predictable pathway across the sky, and set along the western horizon; and stars other than our Sun are visible at night depending on weather and other conditions such as light pollution but not visible during the day.] [Assessment Boundary: Assessment of star patterns is limited to stars being seen at night and not during the day.]

1-ESS1-2. **Make observations at different times of year to relate the amount of daylight to the time of year.** [Clarification Statement: Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out Investigations</td>
<td>ESS1.A: The Universe and its Stars</td>
<td>Patterns</td>
</tr>
<tr>
<td>Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.</td>
<td>• Patterns of the motion of the sun, moon, and stars in the sky can be observed, described, and predicted. (1-ESS1-1)</td>
<td>• Patterns in the natural world can be observed, used to describe phenomena, and used as evidence. (1-ESS1-1),(1-ESS1-2)</td>
</tr>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS1.B: Earth and the Solar System</td>
<td>CROSSCUTTING CONCEPTS</td>
</tr>
<tr>
<td>Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
<td>• Seasonal patterns of sunrise and sunset can be observed, described, and predicted. (1-ESS1-2)</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>• Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. (1-ESS1-1)</td>
<td></td>
<td>• Science assumes natural events happen today as they happened in the past. (1-ESS1-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in first grade: N/A

Articulation of DCIs across grade-levels: 3.PS2.A (1-ESS1-1); 5.PS2.B (1-ESS1-1),(1-ESS1-2) 5-ESS1.B (1-ESS1-1),(1-ESS1-2)

Common Core State Standards Connections:

ELA/Literacy –

W.1.7 Participate in shared research and writing projects (e.g., explore a number of “how-to” books on a given topic and use them to write a sequence of instructions). (1-ESS1-1),(1-ESS1-2)

W.1.8 With guidance and support from adults, recall information from experiences or gather information from provided sources to answer a question. (1-ESS1-1),(1-ESS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (1-ESS1-2)

MP.4 Model with mathematics. (1-ESS1-2)

MP.5 Use appropriate tools strategically. (1-ESS1-2)

1.OA.A.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations to represent the problem. (1-ESS1-2)

1.MD.C.4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. (1-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

2. Structure and Properties of Matter

Students who demonstrate understanding can:

2-PS1-1. Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. [Clarification Statement: Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]

2-PS1-2. Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.* [Clarification Statement: Examples of properties could include, strength, flexibility, hardness, texture, and absorbency. [Assessment Boundary: Assessment of quantitative measurements is limited to length.]

2-PS1-3. Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object. [Clarification Statement: Examples of pieces could include blocks, building bricks, or other assorted small objects.]

2-PS1-4. Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot. [Clarification Statement: An example of a reversible change could include freezing and melting. An example of an irreversible change could include cooking an egg.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-PS1-1)

Analyzing and Interpreting Data
Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations.
- Analyze data from tests of an object or tool to determine if it works as intended. (2-PS1-2)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in K–2 builds on prior experiences and progresses to the use of evidence and ideas in constructing evidence-based accounts of natural phenomena and designing solutions.
- Make observations (firsthand or from media) to construct an evidence-based account for natural phenomena. (2-PS1-3)

Engaging in Argument from Evidence
Engaging in argument from evidence in K–2 builds on prior experiences and progresses to comparing ideas and representations about the natural and designed world(s).
- Construct an argument with evidence to support a claim. (2-PS1-4)

Disciplinary Core Ideas

- Different kinds of matter exist and many of them can be either solid or liquid, depending on temperature. Matter can be described and classified by its observable properties. (2-PS1-1)
- Different properties are suited to different purposes. (2-PS1-2), (2-PS1-3)
- A great variety of objects can be built up from a small set of pieces. (2-PS1-3)

PS1.B: Chemical Reactions
- Heating or cooling a substance may cause changes that can be observed. Sometimes these changes are reversible, and sometimes they are not. (2-PS1-4)

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena
- Scientists search for cause and effect relationships to explain natural events. (2-PS1-4)

Crosscutting Concepts

Patterns
- Patterns in the natural and human designed world can be observed. (2-PS1-1)

Cause and Effect
- Events have causes that generate observable patterns. (2-PS1-4)
- Simple tests can be designed to gather evidence to support or refute student ideas about causes. (2-PS1-2)

Energy and Matter
- Objects may break into smaller pieces and be put together into larger pieces, or change shapes. (2-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World
- Every human-made product is designed by applying some knowledge of the natural world and is built using materials derived from the natural world. (2-PS1-2)

Connections to other DCIs in second grade: N/A

Articulation of DCIs across grade-levels: 4.ESS2.A (2-PS1-3); 5.PS1.A (2-PS1-1),(2-PS1-2),(2-PS1-3); 5.PS1.B (2-PS1-4); 5.LS2.A (2-PS1-3)

Common Core State Standards Connections:

ELA/Literacy –
RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-PS1-4)
RI.2.3 Describe the connection between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text. (2-PS1-4)
RI.2.8 Describe how reasons support specific points the author makes in a text. (2-PS1-2),(2-PS1-4)
W.2.1 Write opinion pieces in which they introduce the topic or book they are writing about, state an opinion, supply reasons that support the opinion, use linking words (e.g., because, and, also) to connect opinion and reasons, and provide a concluding statement or section. (2-PS1-4)
W.2.7 Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-PS1-1),(2-PS1-2),(2-PS1-3)
W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (2-PS1-1),(2-PS1-2),(2-PS1-3)

Mathematics –
MP.2 Reason abstractly and quantitatively. (2-PS1-2)
MP.4 Model with mathematics. (2-PS1-1),(2-PS1-2)
MP.5 Use appropriate tools strategically. (2-PS1-2)
2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (2-PS1-1),(2-PS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
2. Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

- **2-LS2-1.** Plan and conduct an investigation to determine if plants need sunlight and water to grow. [Assessment Boundary: Assessment is limited to testing one variable at a time.]

- **2-LS2-2.** Develop a simple model that illustrates how plants and animals depend on each other for survival.* [Clarification Statement: Examples could include animals dispersing seeds or pollinating plants, and plants providing food, shelter, and other materials for animals.]

- **2-LS4-1.** Make observations of plants and animals to compare the diversity of life in different habitats. [Clarification Statement: Emphasis is on the diversity of living things in each of a variety of different habitats.] [Assessment Boundary: Assessment does not include specific animal and plant names in specific habitats.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Developing and Using Models
- Modeling in K–2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.
 - Develop a simple model based on evidence to represent a proposed object or tool. (2-LS2-2)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in K–2 builds on prior experiences and progresses to simple investigations, based on fair tests, which provide data to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence to answer a question. (2-LS2-1)
 - Make observations (firsthand or from media) to collect data that can be used to make comparisons. (2-LS4-1)

Disciplinary Core Ideas

LS2.A: Interdependent Relationships in Ecosystems
- Animals depend on plants or other animals for food. (2-LS2-2)
- (NYSED) Plants depend on water, light and air to grow. (2-LS2-1)
- (NYSED) Some plants depend on animals for pollination and for dispersal of seeds from one location to another. (2-LS2-2)

LS4.D: Biodiversity and Humans
- There are many different kinds of living things in any area, and they exist in different places on land and in water. (2-LS4-1)

ETS1.B: Developing Possible Solutions
- (NYSED) Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas to other people. (secondary to 2-LS2-2)

Crosscutting Concepts

Cause and Effect
- Events have causes that generate observable patterns. (2-LS2-1)

Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (2-LS2-2)

Patterns
- Similarities and differences in patterns can be used to sort and classify organisms. (2-LS4-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas* unless it is preceded by (NYSED).
2. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

2-ESS1-1. Use information from several sources to provide evidence that Earth events can occur quickly or slowly. **[Clarification Statement: Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and weathering and erosion of rocks, which may occur slowly.]** **[Assessment Boundary: Assessment does not include quantitative measurements of timescales.]**

2-ESS2-1. Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.* **[Clarification Statement: Examples of solutions could include different designs for using rocks, shrubs, grass, and trees to hold back wind, water, and land.]**

2-ESS2-2. Develop a model to represent the shapes and kinds of land and bodies of water in an area. **[Assessment Boundary: Assessment does not include quantitative scaling in models.]**

2-ESS2-3. Obtain information to identify where water is found on Earth and that it can be solid or liquid.

Science and Engineering Practices

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth
- Some events happen very quickly; others occur very slowly, over a time period much longer than one can observe. (2-ESS1-1)

ESS2.A: Earth Materials and Systems
- Water and wind can change the shape of the land. (2-ESS2-1)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- Maps show where things are located. One can map the shapes and kinds of land and water in any area. (2-ESS2-2)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- Water is found in the ocean, rivers, lakes, and ponds. Water exists as solid ice and in liquid form. (2-ESS2-3)

ETS1.C: Optimizing the Design Solution
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (secondary to 2-ESS2-1)

Crosscutting Concepts

Patterns
- Things may change slowly or rapidly. (2-ESS1-1)

Connections to Engineering, Technology, and Applications of Science
- Developing and using technology has impacts on the natural world. (2-ESS2-1)

Science on Society and the Natural World
- Scientists study the natural and material world. (2-ESS2-1)

Common Core State Standards Connections:

ELA/Literacy - RI.2.1
- Ask and answer such questions as why, what, where, when, why, and how to demonstrate understanding of key details in a text. (2-ESS1-1)

RI.2.3
- Compare the most important points presented by two texts on the same topic. (2-ESS1-1)

RI.2.6
- With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (2-ESS1-1)

W.2.6
- Participate in shared research and writing projects (e.g., read a number of books on a single topic to produce a report; record science observations). (2-ESS1-1)

W.2.8
- Recall information from experiences or gather information from provided sources to answer a question. (2-ESS2-3)

SL.2.2
- Recount or describe key ideas or details from a text read aloud or information presented orally or through other media. (2-ESS1-1)

SL.2.5
- Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (2-ESS2-2)

Mathematics - MP.4
- Model with mathematics. (2-ESS1-1,2-ESS2-1,2-ESS2-2)

MP.5
- Use appropriate tools strategically. (2-ESS2-1)

2.NBT.A.3
- Understand place value. (2-ESS1-1)

2.NBT.B.5
- Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem. (2-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

K-2. Engineering Design

Students who demonstrate understanding can:

K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

K-2-ETS1-2. Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

K-2-ETS1-3. Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas* unless it is preceded by (NYSED).

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Asking Questions and Defining Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking questions and defining problems in K-2 builds on prior experiences and progresses to simple descriptive questions.</td>
</tr>
<tr>
<td>- Ask questions based on observations to find more information about the natural and/or designed world. (K-2-ETS1-1)</td>
</tr>
<tr>
<td>- Define a simple problem that can be solved through the development of a new or improved object or tool. (K-2-ETS1-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Developing and Using Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in K-2 builds on prior experiences and progresses to include using and developing models (i.e., diagram, drawing, physical replica, diorama, dramatization, or storyboard) that represent concrete events or design solutions.</td>
</tr>
<tr>
<td>- Develop a simple model based on evidence to represent a proposed object or tool. (K-2-ETS1-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzing and Interpreting Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing data in K-2 builds on prior experiences and progresses to collecting, recording, and sharing observations.</td>
</tr>
<tr>
<td>- Analyze data from tests of an object or tool to determine if it works as intended. (K-2-ETS1-3)</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

ETSI.A: Defining and Delimiting Engineering Problems
- A situation that people want to change or create can be approached as a problem to be solved through engineering. (K-2-ETS1-1)
- Asking questions, making observations, and gathering information are helpful in thinking about problems. (K-2-ETS1-1)
- Before beginning to design a solution, it is important to clearly understand the problem. (K-2-ETS1-1)

ETSI.B: Developing Possible Solutions
- Designs can be conveyed through sketches, drawings, or physical models. These representations are useful in communicating ideas for a problem’s solutions to other people. (K-2-ETS1-2)

ETSI.C: Optimizing the Design Solution
- Because there is always more than one possible solution to a problem, it is useful to compare and test designs. (K-2-ETS1-3)

Crosscutting Concepts

Structure and Function
- The shape and stability of structures of natural and designed objects are related to their function(s). (K-2-ETS1-2)

Articulation of DCIs across grade-bands

- 3-5.ETS1.A (K-2-ETS1-1),(K-2-ETS1-2),(K-2-ETS1-3);
- 3-5.ETS1.B (K-2-ETS1-2),(K-2-ETS1-3);
- 3-5.ETS1.C (K-2-ETS1-1),(K-2-ETS1-2),(K-2-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy

- RI.2.1 Ask and answer such questions as who, what, where, when, why, and how to demonstrate understanding of key details in a text. (K-2-ETS1-1)
- W.2.6 With guidance and support from adults, use a variety of digital tools to produce and publish writing, including in collaboration with peers. (K-2-ETS1-1),(K-2-ETS1-3)
- W.2.8 Recall information from experiences or gather information from provided sources to answer a question. (K-2-ETS1-1),(K-2-ETS1-3)
- SL.2.5 Create audio recordings of stories or poems; add drawings or other visual displays to stories or recounts of experiences when appropriate to clarify ideas, thoughts, and feelings. (K-2-ETS1-2)

Mathematics

- MP.2 Reason abstractly and quantitatively. (K-2-ETS1-1),(K-2-ETS1-3)
- MP.4 Model with mathematics. (K-2-ETS1-1),(K-2-ETS1-3)
- MP.5 Use appropriate tools strategically. (K-2-ETS1-1),(K-2-ETS1-3)
- 2.MD.D.10 Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph. (K-2-ETS1-1),(K-2-ETS1-3)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas* unless it is preceded by (NYSED).*
3. Forces and Interactions

Students who demonstrate understanding can:

3-PS2-1. Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. [Clarification Statement: Examples could include an unbalanced force on one side of an object can make it start moving; and, balanced forces (including friction) acting on a stationary object from both sides will not produce any motion at all.] [Assessment Boundary: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.]

3-PS2-2. Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion. [Clarification Statement: Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary: Assessment does not include technical terms such as period and frequency.]

3-PS2-3. Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. [Clarification Statement: Examples of electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.]

3-PS2-4. Define a simple design problem that can be solved by applying scientific ideas about magnets.* [Clarification Statement: Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions that can be investigated based on patterns such as cause and effect relationships. (3-PS2-3)
- Define a simple problem that can be solved through the development of a new or improved object or tool. (3-PS2-4)

Planning and Carrying Out Investigation
- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (3-PS2-2)

Disciplinary Core Ideas

PS2.A: Forces and Motion
- Each force acts on one particular object and has both strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) (3-PS2-1)
- The patterns of an object’s motion in various situations can be observed and measured; when that past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.) (3-PS2-2)

PS2.B: Types of Interactions
- Objects in contact exert forces on each other. (3-PS2-1)
- Electric and magnetic forces between a pair of objects do not require that the objects be in contact. The sizes of the forces in each situation depend on the properties of the objects and their distances apart and, for forces between two magnets, on their orientation relative to each other. (3-PS2-3, 3-PS2-4)

Crosscutting Concepts

Patterns
- Patterns of change can be used to make predictions. (3-PS2-2)
- Cause and Effect
 - Cause and effect relationships are routinely identified. (3-PS2-1)
 - Cause and effect relationships are routinely identified, tested, and used to explain change. (3-PS2-3)

Connections to Engineering, Technology, and Applications of Science
- Scientific discoveries about the natural world can often lead to new and improved technologies, which are developed through the engineering design process. (3-PS2-4)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
3. Interdependent Relationships in Ecosystems

Students who demonstrate understanding can:

3-LS2-1. Construct an argument that some animals form groups that help members survive. [Clarification Statement: Examples of groups could include a herd of cattle, a swarm of bees, a flock of geese, a pod of whales, etc.]

3-LS4-1. Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago. [Clarification Statement: Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms. [Assessment Boundary: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.]

3-LS4-3. Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all. [Clarification Statement: Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]

3-LS4-4. Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.* [Clarification Statement: Examples of environmental changes could include both natural and human-influenced changes in land characteristics, water distribution, temperature, food, and other organisms. [Assessment Boundary: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.]

The performance expectations above were developed using the following elements from the NYS document A Framework for K-12 Science Education.

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS4-1)

Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed worlds.

- Construct an argument with evidence, data, and/or a model. (3-LS2-1)
- Construct an argument with evidence. (3-LS4-3)
- Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-LS4-4)

Disciplinary Core Ideas

LS2.C: Ecosystem Dynamics, Functioning, and Resilience
- When the environment changes in ways that affect a place’s physical characteristics, temperature, or availability of resources, some organisms survive and reproduce, others move to new locations, yet others move into the transformed environment, and some die. (secondary to 3-LS4-4)

LS2.D: Social Interactions and Group Behavior
- (NYSED) Being part of a group helps some animals obtain food, defend themselves, and survive. Groups may serve different functions and vary dramatically in size. (Note: Moved from K–2) (3-LS2-1)

LS4.A: Evidence of Common Ancestry and Diversity
- Some kinds of plants and animals that once lived on Earth are no longer found anywhere. (Note: Moved from K–2) (3-LS4-1)
- Fossils provide evidence about the types of organisms that lived long ago and also about the nature of their environments. (3-LS4-1)

LS4.C: Adaptation
- For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all. (3-LS4-3)

LS4.D: Biodiversity and Humans
- Populations live in a variety of habitats, and change in those habitats affects the organisms living there. (3-LS4-4)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (3-LS2-1), (3-LS4-3)

Scale, Proportion, and Quantity
- Observable phenomena exist from very short to very long time periods. (3-LS4-1)

Systems and System Models
- A system can be described in terms of its components and their interactions. (3-LS4-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Knowledge of relevant scientific concepts and research findings is important in engineering. (3-LS4-4)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes consistent patterns in natural systems. (3-LS4-1)

Common Core State Standards Connections:

ELA/Literacy –
R.I.3.1 Ask and answer questions to demonstrate understanding of a text, referring explicitly to the text as the basis for the answers. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
R.I.3.2 Determine the main idea of a text; recount the key details and explain how they support the main idea. (3-LS4-1), (3-LS4-3), (3-LS4-4)
R.I.3.3 Describe the relationship between a series of historical events, scientific ideas or concepts, or steps in technical procedures in a text, using language that pertains to time, sequence, and cause/effect. (3-LS2-1), (3-LS4-1), (3-LS4-3), (3-LS4-4)
W.3.1.W.3.2 Write informative/explanatory texts to examine a topic or convey ideas and information clearly. (3-LS4-1), (3-LS4-3), (3-LS4-4)
W.3.3 Report information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. (3-LS4-1)
SL.3.4 Report on a topic or text, tell a story, or recount an experience with appropriate facts and relevant, descriptive details, speaking clearly at an understandable pace. (3-LS4-1), (3-LS4-4)

Mathematics –
MP.2 Reason abstractly and quantitatively. (3-LS4-1), (3-LS4-3), (3-LS4-4)
MP.4 Model with mathematics. (3-LS4-1), (3-LS4-3), (3-LS4-4)
MP.5 Use appropriate tools strategically. (3-LS4-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop models to describe phenomena. (3-LS1-1)

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations.

- When possible and feasible, digital tools should be used.
- Analyze and interpret data to make sense of phenomena using logical reasoning. (3-LS3-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Use evidence (e.g., observations, patterns) to support an explanation. (3-LS3-2)
- Use evidence (e.g., observations, patterns) to construct an explanation. (3-LS4-2)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Reproduction is essential to the continued existence of every kind of organism. Plants and animals have unique and diverse life cycles. (3-LS1-1)

LS3.A: Inheritance of Traits
- Many characteristics of organisms are inherited from their parents. (3-LS3-1)
- Other characteristics result from individuals' interactions with the environment, which can range from diet to learning. (3-LS3-2)
- (NYSED) Some characteristics result from the interactions of both inheritance and the effect of the environment. (3-LS3-2)

LS3.B: Variation of Traits
- Different organisms vary in how they look and function because they have different inherited information. (3-LS3-1)
- The environment also affects the traits that an organism develops. (3-LS3-2)

LS4.B: Natural Selection
- Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates, and reproducing. (3-LS4-2)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort and classify natural phenomena. (3-LS1-1)
- Patterns of change can be used to make predictions. (3-LS1-1)

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (3-LS3-2), (3-LS4-2)

New York State P-12 Science Learning Standards

3. **Inheritance and Variation of Traits: Life Cycles and Traits**

Students who demonstrate understanding can:

3-LS1-1. Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

- Clarification Statement: Changes organisms go through during their life form a pattern.
- Assessment Boundary: Assessment does not include details of human reproduction.

3-LS3-1. Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

- Clarification Statement: Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.
- Assessment Boundary: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.

3-LS3-2. Use evidence to support the explanation that traits can be influenced by the environment.

- Clarification Statement: Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.

3-LS4-2. Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

- Clarification Statement: Examples of cause and effect relationships could include plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to produce offspring.

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

3. Weather and Climate

Students who demonstrate understanding can:

3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
[Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.]
[Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]

3-ESS2-2. Obtain and combine information to describe climates in different regions of the world.
[Clarification Statement: Emphasis should be on various climates in different regions rather than on localized weather conditions.]

3-ESS3-1. Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.*
[Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]

3-ESS2-3. Plan and conduct an investigation to determine the connections between weather and water processes in Earth systems.
[Clarification Statement: Emphasis should be on the processes that connect the water cycle and weather patterns.]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-ESS2-3)
 - Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or a test a design solution. (3-ESS2-3)

Analyzing and Interpreting Data
- Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
 - Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
 - Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.
 - Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)

Disciplinary Core Ideas

ESS2.D: Weather and Climate
- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)
- (NYSED) Earth's processes continuously cycle water, contributing to weather and climate. (3-ESS2-3)

ESS3.B: Natural Hazards
- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1)
 (Note: This Disciplinary Core Idea is also addressed by 4-ESS2-2.)

Crosscutting Concepts

Patterns
- Patterns of change can be used to make predictions. (3-ESS2-1),(3-ESS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS2-3),(3-ESS3-1)

Connections to Nature of Science

Science is a Human Endeavor
- Science affects everyday life. (3-ESS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).

New York State P-12 Science Learning Standards

3. Weather and Climate

Students who demonstrate understanding can:

3-ESS2-1. Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.
[Clarification Statement: Examples of data could include average temperature, precipitation, and wind direction.]
[Assessment Boundary: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.]

3-ESS2-2. Obtain and combine information to describe climates in different regions of the world.
[Clarification Statement: Emphasis should be on various climates in different regions rather than on localized weather conditions.]

3-ESS3-1. Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.*
[Clarification Statement: Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.]

3-ESS2-3. Plan and conduct an investigation to determine the connections between weather and water processes in Earth systems.
[Clarification Statement: Emphasis should be on the processes that connect the water cycle and weather patterns.]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
 - Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-ESS2-3)
 - Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon or a test a design solution. (3-ESS2-3)

Analyzing and Interpreting Data
- Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.
 - Represent data in tables and various graphical displays (bar graphs and pictographs) to reveal patterns that indicate relationships. (3-ESS2-1)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
 - Make a claim about the merit of a solution to a problem by citing relevant evidence about how it meets the criteria and constraints of the problem. (3-ESS3-1)

Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.
 - Obtain and combine information from books and other reliable media to explain phenomena. (3-ESS2-2)

Disciplinary Core Ideas

ESS2.D: Weather and Climate
- Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next. (3-ESS2-1)
- Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary over years. (3-ESS2-2)
- (NYSED) Earth's processes continuously cycle water, contributing to weather and climate. (3-ESS2-3)

ESS3.B: Natural Hazards
- A variety of natural hazards result from natural processes. Humans cannot eliminate natural hazards but can take steps to reduce their impacts. (3-ESS3-1)
 (Note: This Disciplinary Core Idea is also addressed by 4-ESS2-2.)

Crosscutting Concepts

Patterns
- Patterns of change can be used to make predictions. (3-ESS2-1),(3-ESS2-2)

Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (3-ESS2-3),(3-ESS3-1)

Connections to Nature of Science

Science is a Human Endeavor
- Science affects everyday life. (3-ESS3-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]

4-PS3-2. Make observations to provide evidence that energy is conserved as it is transferred and/or converted from one form to another. [Clarification Statement: Examples of forms of energy could include sound, light, heat, and electrical.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

4-PS3-4. Develop sci-entific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of ideas could include electric circuits that convert electrical energy into energy of motion of a vehicle, light, or sound; batteries that convert chemical energy to electrical energy; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

4-ESS3-1. Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.] The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.
- Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. (4-PS3-3)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a device solution. (4-PS3-2)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.
- Use evidence (e.g., measurements, observations, patterns) to construct an explanation. (4-PS3-1)
- Apply scientific ideas to solve design problems. (4-PS3-3)

Obtaining, Evaluating, and Communicating Information
- Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.
- Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)

Disciplinary Core Ideas

PS3.A: Definitions of Energy
- (NYSED) A given object possesses more energy of motion when it is moving faster. (4-PS3-3)
- (NYSED) Energy can be transferred by moving objects or by sound, light, heat, or electric currents. (4-PS3-2), (4-PS3-3)

PS3.B: Conservation of Energy and Energy Transfer
- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2), (4-PS3-3)
- (NYSED) Energy can also be transferred by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2), (4-PS3-4)

PS3.C: Relationship Between Energy and Forces
- When objects collide, the contact forces transfer energy so as to change the objects’ motions. (4-PS3-3)

PS3.D: Energy in Chemical Processes and Everyday Life
- The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)

ESS3.A: Natural Resources
- Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. (4-ESS3-1)

ETS1.A: Defining Engineering Problems
- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)

Energy and Matter
- Energy can be transferred in various ways and between objects. (4-PS3-1), (4-PS3-2), (4-PS3-3), (4-PS3-4)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)

Influence of Engineering, Technology, and Science on Society and the Natural World
- Over time, people’s needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)
- Engineers improve existing technologies or develop new ones. (4-PS3-4)

Connections to Nature of Science

Science is a Human Endeavor
- Most scientists and engineers work in teams. (4-PS3-4)
- Science affects everyday life. (4-PS3-4)

Common Core State Standards Connections:

ELA/Literacy
- Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS3-1)
- Read and comprehend procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. (4-PS3-1)
- Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS3-1)
- Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (4-PS3-1)
- Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-2), (4-PS3-3), (4-PS3-4), (4-ESS3-1)
- Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1), (4-PS3-2), (4-PS3-3), (4-PS3-4), (4-ESS3-1)
- Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-PS3-1), (4-ESS3-1)

Mathematics
- Reason abstractly and quantitatively. (4-ESS1-1)
- Model with mathematics. (4-ESS1-1)

Interdisciplinary Core Ideas

- Interpret a multiplication equation as a comparison, e.g., interpret 5 x 7 as a statement that 5 is times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-1)
- Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
4. Waves: Waves and Information

Students who demonstrate understanding can:

4-PS4-1. Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move. [Clarity Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information.* [Clarity Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-PS4-3)

Scientific Knowledge is Based on Empirical Evidence
Science findings are based on recognizing patterns. (4-PS4-1)

Disciplinary Core Ideas

- **PS4.A: Wave Properties**
 - Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2). (4-PS4-1)
 - Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)

- **PS4.C: Information Technologies and Instrumentation**
 - Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. (4-PS4-3)

ETS1.C: Optimizing The Design Solution
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)

Crosscutting Concepts

- **Patterns**
 - Similarities and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)
 - Similarities and differences in patterns can be used to sort and classify designed products. (4-PS4-3)

Connections to Engineering, Technology, and Applications of Science
Interdependence of Science, Engineering, and Technology
- Knowledge of relevant scientific concepts and research findings is important in engineering. (4-PS4-3)

Common Core State Standards Connections:

ELA/Literacy –
- RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS4-3)
- RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS4-3)
- SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-1)

Mathematics –
- **MP.4** Model with mathematics. (4-PS4-1)
- **4.G.A.1** Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Science and Engineering Practices

Developing and Using Models

Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Develop a model to describe phenomena. (4-PS4-2)
- Use a model to test interactions concerning the functioning of a natural system. (4-LS1-2)

Engaging in Argument from Evidence

Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Construct an argument with evidence, data, and/or a model. (4-LS1-1)

Disciplinary Core Ideas

PS4.B: Electromagnetic Radiation

- An object can be seen when light reflected from its surface enters the eyes. (4-PS4-2)

LS1.A: Structure and Function

- Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)

LS1.D: Information Processing

- Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal’s brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified. (4-PS4-2)

Systems and System Models

- A system can be described in terms of its components and their interactions. (4-LS1-1), (LS1-2)

Articulation of DCIs across grade-levels:

- **1.PS4.B** (4-PS4-2); **1.LS1.A** (4-LS1-1); **1.LS1.D** (4-LS1-2); **3.LS3.B** (4-LS1-1); **MS.PS4.B** (4-PS4-2); **MS.LS1.A** (4-LS1-1), (4-LS1-2); **MS.LS1.D** (4-PS4-2), (4-LS1-2)

Connections to other DCIs in this grade-level: N/A

Common Core State Standards Connections:

ELA/Literacy –

- **W.4.1** Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (4-LS1-1)

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-2), (4-LS1-2)

Mathematics –

- **MP.4** Model with mathematics. (4-PS4-2)

- **4.G.A.1** Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-2)

- **4.G.A.3** Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. (4-LS1-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
4. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS1-1. Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; tilted rock layers indicate past crustal movement; glacial scratches on rock formations indicating glacier movement; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]

4-ESS2-1. Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water and/or loose Earth materials due to gravity, amount of vegetation, speed of wind, relative rate of deposition, cycling of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth’s features. [Clarification Statement: Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.]

4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

5. Structure and Properties of Matter

<table>
<thead>
<tr>
<th>Students who demonstrate understanding can:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen.** [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]</td>
</tr>
<tr>
<td>5-PS1-2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances the total amount of matter is conserved. **[Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances. Assume that reactions with any gas production are conducted in a closed system.] [Assessment Boundary: Assessment does not include distinguishing between mass and weight.]</td>
</tr>
<tr>
<td>5-PS1-3. Make observations and measurements to identify materials based on their properties. **[Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing between mass and weight.]</td>
</tr>
<tr>
<td>5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances. **[Clarification Statement: Examples could include mixing baking soda and vinegar.]</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified, tested, and used to explain change. (5-PS1-4)

Scale, Proportion, and Quantity

- Natural objects exist from the very small to the immensely large. (5-PS1-1)
- Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-2, 5-PS1-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes consistent patterns in natural systems. (5-PS1-2)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1)
- (NYSED) The total amount of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

PS1.B: Chemical Reactions

- When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)
- No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)

Science and Engineering Practices

Developing and Using Models

- Modeling in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. (5-PS1-3)

Planning and Carrying Out Investigations

- Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (5-PS1-4)
- Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (5-PS1-3)

Mathematical and Computational Thinking

- Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. (5-PS1-3)
- Use appropriate tools strategically. (5-PS1-2, 5-PS1-3)

New York State P-12 Science Learning Standards

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. (5-PS1-3)
- **Planning and Carrying Out Investigations**
 - Conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (5-PS1-4)
- **Using Mathematics and Computational Thinking**
 - Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions. (5-PS1-3)

Common Core State Standards Connections:

ELA/Literacy – RI.5.7

- Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS1-1)

W.5.5

- Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-2, 5-PS1-3)(5-PS1-4)

W.5.6

- Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-2, 5-PS1-3)(5-PS1-4)

W.5.9

- Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-2, 5-PS1-3, 5-PS1-4)

Mathematics – MP.2

- Reason abstractly and quantitatively. (5-PS1-1)(5-PS1-2, 5-PS1-3)

MP.4

- Model with mathematics. (5-PS1-1)(5-PS1-2, 5-PS1-3)

MP.5

- Use appropriate tools strategically. (5-PS1-2, 5-PS1-3)

5.NBT.A.1

- Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-PS1-1)

5.NF.B.7

- Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (5-PS1-1)

5.MD.A.1

- Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems. (5-PS1-2)

5.MD.C.3

- Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the “Disciplinary Core Ideas” section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
5. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

5-PS3-1. Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the Sun. [Clarification Statement: Emphasis should be on plants converting light energy by photosynthesis into usable energy. Examples of models could include diagrams and flow charts.]

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]

5-LS2-1. Develop a model to describe the movement of matter among plants (producers), animals (consumers), decomposers, and the environment. [Clarification Statement: Emphasis is on the flow of energy and cycling of matter in systems such as organisms, ecosystems, and/or Earth. [Assessment Boundary: Assessment does not include molecular explanations.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models
Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.

- Use models to describe phenomena. (5-PS3-1)
- Develop a model to describe phenomena. (5-LS2-1)

Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).

- Support an argument with evidence, data, or a model. (5-LS1-1)

Disciplinary Core Ideas

PS3.D: Energy in Chemical Processes and Everyday Life
- The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1)

- Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (Secondary to 5-PS3-1)
- Plants acquire their material for growth chiefly from air and water. (5-LS1-1)

LS2.A: Interdependent Relationships in Ecosystems
- The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. (5-LS2-1)

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems
- Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)

Connections to other DCIs in fifth grade: 5.PS1.A (5-LS1-1),(5-LS2-1); 5.ESS2.A (5-LS2-1)

Articulation of DCIs across grade-levels: K.LS1.C (5-PS3-1),(5-LS1-1); 2.PS1.A (5-LS2-1); 2.LS2.A (5-PS3-1),(5-LS1-1); 2.LS4.B (5-LS2-1); 4.PS3.A (5-PS3-1); 4.PS3.B (5-PS3-1); 4.PS3.D (5-PS3-1); 4.ESS2.E (5-LS1-1); MS.PS3.D (5-LS2-1); MS.PS4.B (5-PS3-1); MS.LS1.C (5-PS3-1),(5-LS1-1),(5-LS2-1); MS.LS2.A (5-LS2-1); MS.LS2.B (5-PS3-1),(5-LS1-1),(5-LS2-1);

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-LS1-1)

RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS3-1),(5-LS2-1)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-LS1-1)

W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-LS1-1)

SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-PS3-1),(5-LS2-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (5-LS1-1),(5-LS2-1)

MP.4 Model with mathematics. (5-LS1-1),(5-LS2-1)

MP.5 Use appropriate tools strategically. (5-LS1-1)

5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. (5-LS1-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

5. Earth’s Systems

5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/ or atmosphere interact. [Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to interactions of two systems at a time.]

5-ESS2-2. Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

5-ESS3-1. Obtain and combine information about ways individual communities use science ideas to protect Earth’s resources and environment. [Clarification Statement: Emphasis should be on how communities use information to sustain resources and the environment locally, regionally, nationally, and/or internationally.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models

Modeling in 3-5 builds on K-2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.

- Develop a model using an example to describe a scientific principle. (5-ESS2-1)

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 3-5 builds on K-2 experiences and progresses to extending quantitative measurements to address scientific questions. (5-ESS2-2)

- Describe and graph quantities such as area and volume to address scientific questions. (5-ESS2-2)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 3-5 builds on K-2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.

- Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1)

The performance expectations above were developed using the following elements from A Framework for K-12 Science Education:

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems

- Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)

ESS2.C: The Roles of Water in Earth’s Surface Processes

- Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)

ESS3.C: Human Impacts on Earth Systems

- Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (5-ESS3-1)

Crosscutting Concepts

Scale, Proportion, and Quantity

- Standard units are used to measure and describe physical quantities such as weight, and volume. (5-ESS2-2)

Systems and System Models

- A system can be described in terms of its components and their interactions. (5-ESS2-1)

Connections to Nature of Science

Science Addresses Questions About the Natural and Material World

- Science findings are limited to questions that can be answered with empirical evidence. (5-ESS3-1)

Common Core State Standards Connections

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)

RI.5.5 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)

W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-2)(5-ESS3-1)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)

SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-1),(5-ESS3-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (5-ESS2-1),(5-ESS3-1)

MP.4 Model with mathematics. (5-ESS2-1),(5-ESS3-1)

5.G.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSSED).
5. Space Systems: Stars and the Solar System

Science and Engineering Practices

Analyzing and Interpreting Data
Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.

- Represent data in graphical displays (bar graphs, pictographs and/or pie charts) to reveal patterns that indicate relationships. (5-ESS1-2)
- Support an argument with evidence, data, or a model. (5-PS2-1),(5-ESS1-1)

Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed worlds.

- Support an argument with evidence, data, or a model. (5-PS2-1),(5-ESS1-1)

Disciplinary Core Ideas

PS2.B: Types of Interactions
- The gravitational force of Earth acting on an object near Earth’s surface pulls that object toward the planet’s center. (5-PS2-1)

ESS1.A: The Universe and its Stars
- The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)

ESS1.B: Earth and the Solar System
- The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)

Crosscutting Concepts

Patterns
- Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena. (5-ESS1-2)

Cause and Effect
- Cause and effect relationships are routinely identified and used to explain change. (5-PS2-1)

Scale, Proportion, and Quantity
- Natural objects exist from the very small to the immensely large. (5-ESS1-1)

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 1.ESS1.A (5-ESS1-2); 1.ESS1.B (5-ESS1-2); 3.PS2.A (5-PS2-1),(5-ESS1-2); 3.PS2.B (5-PS2-1); MS.PS2.B (5-PS2-1); MS.ESS1.A (5-ESS1-1),(5-ESS1-2); MS.ES1.B (5-PS2-1),(5-ESS1-2); MS.ES1.C (5-PS2-1)

Common Core State Standards Connections:

ELA/Literacy –
RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-PS2-1),(5-ESS1-1)
RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS1-1)
RI.5.8 Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). (5-ESS1-1)
RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-PS2-1),(5-ESS1-1)
W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-PS2-1),(5-ESS1-1)
SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS1-2)

Mathematics –
MP.2 Reason abstractly and quantitatively. (5-ESS1-1),(5-ESS1-2)
MP.4 Model with mathematics. (5-ESS1-1),(5-ESS1-2)
5.NBT.A.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-ESS1-1)
5.G.A.2 Represent real-world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to identifying qualitative relationships.

- Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost. (3-5-ETS1-1)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-5-ETS1-3)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-5-ETS1-2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

- Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1)

ETS1.B: Developing Possible Solutions

- Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2)

- At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2)

ETS1.C: Optimizing the Design Solution

- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- People’s needs and wants change over time, as do their demands for new and improved technologies. (3-5-ETS1-1)

- Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).

New York State P-12 Science Learning Standards
Students who demonstrate understanding can:

MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. [Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of particulate-level models could include drawings, 3D ball and stick structures, or computer representations showing different substances with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the individual ions composing complex structures, or a complete depiction of all individual atoms in a complex molecule or extended structure.]

MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society. [Clarification Statement: Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to the qualitative interpretation of evidence provided.]

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and phase (state) of a substance when thermal energy is added or removed. [Clarification Statement: Emphasis is on qualitative particulate-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of phase occurs. Examples of models could include drawings and diagrams. Examples of particles could include ions, molecules, or atoms. Examples of substances could include sodium chloride, water, carbon dioxide, and helium.]

MS-PS1-7. Unconstrained evidence to illustrate that density is a property that can be used to identify samples of matter. [Clarification Statement: Emphasis should be on students measuring the masses and volumes of regular and irregular shaped objects, calculating their densities, and identifying the samples of matter.]

MS-PS1-8. Plan and conduct an investigation to demonstrate that mixtures are combinations of substances. [Clarification Statement: Emphasis should be on analyzing the physical changes that occur as mixtures are formed and/or separated. Examples of common mixtures could include salt water, oil and vinegar, and air. [Assessment boundary: Assessment is limited to separation by evaporation, filtration and magnetism.]

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop a model to predict and/or describe phenomena. (MS-PS1-1), (MS-PS1-4)

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

- Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS1-8)
- Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. (MS-PS1-8)

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.

- Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-PS1-7)

Obtaining, Evaluating, and Communicating Information

Obtaining, evaluating, and communicating information in 6–8 builds on K–5 and progresses to evaluating the merit and validity of ideas and methods.

- Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-PS1-3)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- **(NYSED)** Substances are made of one type of atom or combinations of different types of atoms. Individual atoms are particles and can combine to form larger particles that range in size from two to thousands of atoms. (MS-PS1-1)
- **(NYSED)** Each substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-3), (MS-PS1-7) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2)
- **(NYSED)** In a solid, the particles are closely spaced and vibrate in position but do not change their relative locations. In a liquid, the particles are closely spaced but are able to change their relative locations. In a gas, the particles are widely spaced except when they happen to collide and constantly change their relative locations. (MS-PS1-4)
- **(NYSED)** Solids may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)
- **(NYSED)** The changes of state that occur with variations in temperature and/or pressure can be described and predicted using these models of matter. (MS-PS1-4)
- **(NYSED)** Mixtures are physical combinations of one or more samples of matter and can be separated by physical means. (MS-PS1-4)

PS1.B: Chemical Reactions

- **(NYSED)** Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different particles, and these new substances have different properties from those of the reactants. (MS-PS1-3) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-2 and MS-PS1-5)

PS3.A: Definitions of Energy

- **(NYSED)** The term “heat” as used in everyday language refers both to thermal energy (the motion of particles within a substance) and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to the energy transferred due to the temperature difference between two objects. (Secondary to MS-PS1-4)
- **(NYSED)** Temperature is not a form of energy. Temperature is a measurement of the average kinetic energy of the particles in a sample of matter. (Secondary to MS-PS1-4)

Crosscutting Concepts

Patterns

- Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-1), (MS-PS1-4)
- Graphs, charts, and images can be used to identify patterns in data. (MS-PS1-1), (MS-PS1-4)

Cause and Effect

- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS1-4)

Scale, Proportion, and Quantity

- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-PS1-1)

Structure and Function

- Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS1-3)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology

- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-PS1-3)

Influence of Science, Engineering and Technology on Society and the Natural World

- The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-PS1-3)

Common Core State Standards Connections:

- **ELA/Literacy**
 - Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS1-2)
 - Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-1), (MS-PS1-4)
 - WHST.6-8.8 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Mathematics -</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (MS-PS1-1), (MS-PS1-8)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (MS-PS1-1)</td>
</tr>
<tr>
<td>6.RP.A.3</td>
<td>Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1)/(MS-PS1-7)</td>
</tr>
<tr>
<td>6.NS.C.5</td>
<td>Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS1-4)</td>
</tr>
<tr>
<td>8.EE.A.3</td>
<td>Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (MS-PS1-1)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

MS. Chemical Reactions

Students who demonstrate understanding can:

MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred. [Clarification Statement: Examples of chemical reactions could include burning of a wooden splint, souring of milk and decomposition of sodium bicarbonate. [Assessment Boundary: Assessment is limited to the analysis of the following properties: density, melting point, boiling point, solubility, flammability, color change, gas production and odor.]]

MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. [Clarification Statement: Emphasis is on the law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms. [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.]]

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy during a chemical and/or physical process. [Clarification Statement: Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and amount of a substance. Examples of designs could include combining vinegar and baking soda, activating glow sticks at various temperatures and dissolving ammonium chloride or calcium chloride. [Assessment Boundary: Assessment is limited to the criteria of substance amounts, reaction time, and observed temperature changes.]]

Science and Engineering Practices

Developing and Using Models

Modeling in 6–8 builds on K–5 and progresses to forming more complex and sophisticated models.

- **Analyzing and Interpreting Data**

 Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- **Constructing Explanations and Designing Solutions**

 Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.

 - Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria and constraints. (MS-PS1-6)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter

- **(NYSED) Each substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be used to identify it. (MS-PS1-2) (Note: This Disciplinary Core Idea is also addressed by MS-PS1-3.)**

PS1.B: Chemical Reactions

- **(NYSED) Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are regrouped into different particles and these new substances have different properties from those of the reactants. (MS-PS1-2), (Note: This Disciplinary Core Idea is also addressed by MS-PS1-3.)**

- The total number of each type of atom is conserved, and thus the mass does not change. (MS-PS1-5)

- *(NYSED) Some chemical reactions release energy, others absorb energy. (MS-PS1-6)*

ETS1.B: Developing Possible Solutions

- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. *(secondary to MS-PS1-6)*

ETS1.C: Optimizing the Design Solution

- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of the characteristics may be incorporated into the new design. *(secondary to MS-PS1-6)*

- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. *(secondary to MS-PS1-6)*

Crosscutting Concepts

Patterns

- Macroscopic patterns are related to the nature of microscopic and atomic-level structure. (MS-PS1-2)

- The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS1-6)

Science Knowledge is Based on Evidence

- Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS1-2)

Science Models, Laws, Mechanisms, and Theories

- Explain Natural Phenomena

 - Laws are regularities or mathematical descriptions of natural phenomena. (MS-PS1-5)

Articulation across grade-bands:

<table>
<thead>
<tr>
<th>MS-PS1.D</th>
<th>(MS-PS1-2),(MS-PS1-5); MS.LS1.C</th>
<th>(MS-PS1-2),(MS-PS1-5); MS.LS2.B</th>
<th>(MS-PS1-5); MS.ESS2.A</th>
<th>(MS-PS1-2),(MS-PS1-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS.PS3.D</td>
<td>(MS-PS1-6); MS.PS3.A</td>
<td>(MS-PS1-6); MS.PS3.B</td>
<td>(MS-PS1-6); MS.PS3.C</td>
<td>(MS-PS1-6); MS.PS3.D</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

ELA/Literacy

- **RST.6.8.1** Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS1-2)

- **RST.6.8.3** Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS1-6)

- **RST.6.8.7** Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-2), (MS-PS1-5)

WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS1-2)

Mathematics

- **MP.2** Reason abstractly and quantitatively. (MS-PS1-2),(MS-PS1-5)

- **MP.4** Model with mathematics. (MS-PS1-5)

- **6.RP.A.3** Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-2),(MS-PS1-5)

- **6.SP.B.4** Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (MS-PS1-2)

- **6.SP.B.5** Summarize numerical data sets in relation to their context. (MS-PS1-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

MS. Forces and Interactions

Students who demonstrate understanding can:

MS-PS2-1. Apply Newton's Third Law to design a solution to a problem involving the motion of two colliding objects.*

[Clarification Statement: Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.]

MS-PS2-2. Plan and conduct an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. [Clarification Statement: Emphasis is on balanced (Newton's First Law) and unbalanced forces in a system (including simple machines), qualitative comparisons of forces, mass and changes in motion (Newton's Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame that does not move at a variable rate. Assessment does not include the use of trigonometry.]

MS-PS2-3. Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. [Clarification Statement: Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.]

MS-PS2-4. Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects and the distance between them. [Clarification Statement: Explanations of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton's Law of Gravitation or Kepler's Laws.]

MS-PS2-5. Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact. [Clarification Statement: Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations. Emphasis should be on using arrows to represent the directions of forces.] [Assessment Boundary: Assessment is limited to electric and magnetic fields, and is limited to qualitative evidence for the existence of fields.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

- **Science and Engineering Practices**
- **Disciplinary Core Ideas**
- **Crosscutting Concepts**

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in grades 6–8 builds from grades K–5 experiences and progresses to specifying relationships between variables, and adding sub-questions and arguments and models.
 - Ask questions that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a hypothesis based on observations and scientific principles. (MS-PS2-3)

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.
 - Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim. (MS-PS2-2)
 - Conduct an investigation and evaluate the experimental design to produce data as the basis for evidence that can meet the goals of the investigation. (MS-PS2-5)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific ideas or principles to design an object, tool, process or system. (MS-PS2-1)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 6–8 builds from K–5 experiences and progresses to construct a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.
 - Construct and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-PS2-4)

Disciplinary Core Ideas

PS2.A: Forces and Motion
- For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first, but in the opposite direction (Newton’s third law). (MS-PS2-1)
 - The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. (MS-PS2-2)
 - All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared. (MS-PS2-2)

PS2.B: Types of Interactions
- Electric and magnetic (electromagnetic) forces can be attractive or repulsive, and their sizes depend on the magnetic strengths involved and on the distances between the interacting objects. (MS-PS2-3)
 - Gravitational forces are always attractive. There is a gravitational force between any two masses, but it is very small except when one or both of the objects have large mass—e.g., Earth and the sun. (MS-PS2-4)
 - Forces that act at a distance (electric, magnetic, and gravitational) can be explained by fields that extend through space and can be mapped by their effect on a test object (a charged object, or a ball, respectively). (MS-PS2-5)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-PS2-3),(MS-PS2-5)

Systems and System Models
- Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy and matter flows within systems. (MS-PS2-1),(MS-PS2-4),

Stability and Change
- Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and forces at different scales. (MS-PS2-2)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World
- The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-PS2-1)

Connections to Nature of Science

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based upon logical and conceptual connections between evidence and explanations. (MS-PS2-2),(MS-PS2-4)

Connections to other DCIs in this grade-band
- MS.PS3.A (MS-PS2-2); MS.PS3.B (MS-PS2-2); MS.PS3.C (MS-PS2-1); MS.ESS1.A (MS-PS2-4); MS.ESS1.B (MS-PS2-4);

Articulation across grade-bands
- MS.PS2.1 (MS-PS2-1),(MS-PS2-2); MS.PS2.2 (MS-PS2-3),(MS-PS2-5); MS.PS2.3 (MS-PS2-4); HS.PS2.1A (MS-PS2-1),(MS-PS2-2); HS.PS2.1B (MS-PS2-2), (MS-PS2-4)

Common Core State Standards Connections
- ELA/Literacy – RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions (MS-PS2-1),(MS-PS2-3)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS2-1),(MS-PS2-2),(MS-PS2-5)

WHST.6-8.1 Write arguments focused on discipline-specific content. (MS-PS2-4)

WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS2-1),(MS-PS2-2),(MS-PS2-5)

Mathematics –

MP.2 Reason abstractly and quantitatively. (MS-PS2-1),(MS-PS2-2),(MS-PS2-3)

6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS2-1)

6.EE.A.2 Write, read, and evaluate expressions in which letters stand for numbers. (MS-PS2-1),(MS-PS2-2)

7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-PS2-1),(MS-PS2-2)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-PS2-1),(MS-PS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. [Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.] [Assessment Boundary: Assessment could include both qualitative and quantitative evaluations of kinetic energy.]

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. [Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.]

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.* [Clarification Statement: Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

MS-PS3-4. Plan and conduct an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the temperature of the sample of matter. [Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same size as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.]

MS-PS3-5. Construct, use, and present an argument to support the claim that when work is done on or by a system, the energy of the system changes as energy is transferred to or from the system. [Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment could include calculations of work and energy.]

MS-PS3-6. Make observations to provide evidence that energy can be transferred by electric currents. [Clarification Statement: Emphasis should be on arrangements of circuit components in series and parallel circuits.] [Assessment Boundary: Assessment will be limited to qualitative analysis and reasoning.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, and predict how matter, energy, and systems change. Examples could include plastic models of molecules, computer simulations of natural systems, and graphical displays of data.

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or design solutions.

Analyzing and Interpreting Data
Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.

Engaging in Argument from Evidence
Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed worlds.

Disciplinary Core Ideas

PS3.A: Definitions of Energy
- Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. (MS-PS3-1)
- A system of objects may also contain stored (potential) energy, depending on their relative positions. (MS-PS3-2)

PS3.B: Conservation of Energy and Energy Transfer
- When the motion energy of an object changes, there is inevitably some other change in energy at the same time. (MS-PS3-5)
- The amount of energy transferred needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the mass of the sample, and the environment. (MS-PS3-4)
- Energy is spontaneously transferred out of hotter regions or objects and into colder ones. (MS-PS3-3)

PS3.C: Relationship Between Energy and Forces
- When two objects interact, each exerts a force on the other that can cause energy to be transferred to and from the object. (MS-PS3-2)

ETS1.A: Defining and Delimiting an Engineering Problem
- The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to limit possible solutions. (secondary to MS-PS3-3)

ETS1.B: Developing Possible Solutions
- A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary to MS-PS3-3)

Crosscutting Concepts

Scale, Proportion, and Quantity
- Proportional relationships (e.g. speed as the ratio of distance traveled to time taken) among different types of quantities provide information about the magnitude of properties and processes. (MS-PS3-1, MS-PS3-4)
- The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-5)

Energy and Matter
- Energy may take different forms (e.g. energy in fields, thermal energy, energy of motion). (MS-PS3-5)
- The transfer of energy can be tracked as energy flows through a designed or natural system. (MS-PS3-5, MS-PS3-6)

*The performance expectations marked with an asterisk integrate traditional content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED)."
ELA/Literacy	RST.6-8.1	Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4),(MS-PS3-5).
	RST.6-8.3	Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4),(MS-PS3-5).
	RST.6-8.7	Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS3-1).
WHST.6-8.1	Write arguments focused on discipline content. (MS-PS3-3).	
WHST.6-8.7	Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS3-3),(MS-PS3-4).	
SL.8.5	Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-PS3-2).	
Mathematics	MP.2	Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4).
	6.RP.A.1	Understand the concept of ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS3-1),(MS-PS3-2),(MS-PS3-3),(MS-PS3-4).
	6.RP.A.2	Understand the concept of a unit rate a/b associated with a ratio a:b with b ≠ 0, and use rate language in the context of a ratio relationship. (MS-PS3-1).
	7.RP.A.2	Recognize and represent proportional relationships between quantities. (MS-PS3-1),(MS-PS3-2),(MS-PS3-3).
	8.EE.A.1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. (MS-PS3-1).
	8.EE.A.2	Use square root and cube root symbols to represent solutions to equations of the form x² = p and x³ = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. (MS-PS3-1).
	8.F.A.3	Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-2),(MS-PS3-3).
	6.SP.B.5	Summarize numerical data sets in relation to their context. (MS-PS3-4).

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
MS. Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

MS-PS4-1. Develop a model and use mathematical representations to describe waves that includes frequency, wavelength, and how the amplitude of a wave is related to the energy in a wave. [Clarification Statement: Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment is limited to comparing standard repeating waves of only one type (transverse or longitudinal).]

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials. [Clarification Statement: Emphasis is on both light and mechanical waves. Examples of models could include drawings, ray diagrams, simulations, and written descriptions. Materials could include plane, convex, and concave mirrors and biconvex and biconcave lenses.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.]

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals. [Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]

Disciplinary Core Ideas

PS4.A: Wave Properties
- A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (MS-PS4-1)
- A sound wave needs a medium through which it is transmitted. (MS-PS4-2)

PS4.B: Electromagnetic Radiation
- When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and the frequency (color) of the light. (MS-PS4-2)
- The path that light travels can be traced as straight lines, except when it hits a surface between different transparent materials (e.g., air and water, air and glass) obliquely where the light path bends. (MS-PS4-2)
- A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between media. (MS-PS4-2)
- (NYSED) However, because light can travel through space, it cannot be a mechanical wave, like sound or water waves. (MS-PS4-2)

PS4.C: Information Technologies and Instrumentation
- Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. (MS-PS4-3)

Crosscutting Concepts

Patterns
- Graphs and charts can be used to identify patterns in data. (MS-PS4-1)

Structure and Function
- Structures can be designed to serve particular functions by taking into account properties of different materials, and how materials can be shaped and used. (MS-PS4-2)
- Structures can be designed to serve particular functions. (MS-PS4-3)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World
- Technologies extend the measurement, exploration, modeling, and computational capacity of scientific investigations. (MS-PS4-3)

Science is a Human Endeavor
- Advances in technology influence the progress of science and science has influenced advances in technology. (MS-PS4-3)

Articulation across DCIs in this grade-band: MS.LS1.D (MS-PS4-2)

Articulation across grade-bands: 4.PS3.A (MS-PS4-1); 4.PS3.B (MS-PS4-1); 4.PS4.A (MS-PS4-1); 4.PS4.B (MS-PS4-2); 4.PS4.C (MS-PS4-3); HS.PS4.A (MS-PS4-1),(MS-PS4-2),(MS-PS4-3); HS.PS4.B (MS-PS4-1),(MS-PS4-2); HS.PS4.C (MS-PS4-3); HS.ESS1.A (MS-PS4-2); HS.ESS2.A (MS-PS4-2); HS.ESS2.C (MS-PS4-2); HS.ESS2.D (MS-PS4-2)

Common Core State Standards Connections:

ELA/Literacy –

- Cite specific textual evidence to support analysis of science and technical texts. (MS-PS4-3)

Mathematics –

- Reason abstractly and quantitatively. (MS-PS4-1)
- Model with mathematics. (MS-PS4-1)
- Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-PS4-1)
- Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS4-1)
- Recognize and represent proportional relationships between quantities. (MS-PS4-1)
- Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. (MS-PS4-1)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Disciplinary Core Ideas

LS1A: Structure and Function
- All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular). (MS-LS1-1)
- Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell. (MS-LS1-2)
- In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions. (MS-LS1-3)

LS1D: Information Processing
- Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. (MS-LS1-8)
- Plants respond to stimuli such as gravity (geotropism) and light (phototropism). (MS-LS1-8)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural systems. (MS-LS1-8)

Scale, Proportion, and Quantity
- Phenomena that can be observed at one scale may not be observable at another scale. (MS-LS1-1)

Systems and System Models
- Systems may interact with other systems; they may have sub-systems and be a part of larger complex systems. (MS-LS1-3)

Science is a Human Endeavor
- Scientists and engineers are guided by habits of mind such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas. (MS-LS1-3)

Science and Engineering Practices

- **Developing and Using Models**
 - Modeling in 6–8 builds on K–5 experiences and progresses to support explanations or solutions.
 - Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation. (MS-LS1-2)

- **Planning and Carrying Out Investigations**
 - Planning and carrying out investigations in 6-8 builds on K-5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.

- **Constructing Explanations and Designing Solutions**
 - Constructing explanations and designing solutions in 6–8 builds on K-5 experiences and progresses to include investigating evidence consistent with scientific knowledge, principles, and theories.
 - Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-LS1-3)

- **Obtaining, Evaluating, and Communicating Information**
 - Obtaining, evaluating, and communicating information in 6–8 builds on K-5 experiences and progresses to evaluating the merit and validity of ideas and methods.
 - Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-LS1-8)

Connections to Engineering, Technology, and Applications of Science

- **Interdependence of Science, Engineering, and Technology**
 - Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-LS1-1)

Connections to Nature of Science

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. [Clarification Statement: Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.]

MS-LS1-7. Develop a model to describe how food molecules are rearranged through chemical reactions to release energy during cellular respiration and/or form new molecules that support growth as this matter moves through an organism. [Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for respiration or synthesis.]

MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]

MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem. [Clarification Statement: Emphasis is on describing the conservation of matter and flow of energy associated with ecosystem, and on defining the boundaries of the ecosystem.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]

MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. [Clarification Statement: Emphasis is on recognizing patterns in data and making warranted inferences about shifts in populations due to changes in the ecosystem.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

- Developing and Using Models
 - Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
 - Develop a model to describe phenomena. (MS-LS2-3)
 - Develop a model to describe unobservable mechanisms. (MS-LS1-7)

- Analyzing and Interpreting Data
 - Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.
 - Analyze and interpret data to provide evidence for phenomena. (MS-LS2-1)

- Constructing Explanations and Designing Solutions
 - Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.
 - Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-LS1-6)

- Engaging in Argument from Evidence
 - Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).
 - Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS2-4)

Disciplinary Core Ideas

 - Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use. (MS-LS1-6)
 - Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy. (MS-LS1-7)

- LS2.A: Interdependent Relationships in Ecosystems
 - Organisms, and populations of organisms, are dependent on their environmental interactions both with other living things and with nonliving factors. (MS-LS1-1)
 - In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. (MS-LS2-1)
 - Growth of organisms and population increases are limited by access to resources. (MS-LS2-1)

- LS2.B: Cycle of Matter and Energy Transfer in Ecosystems
 - Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level. Decomposers recycle nutrients from dead plant or animal matter back to the soil in terrestrial environments or to the water in aquatic environments. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. (MS-LS2-3)

- LS2.C: Ecosystem Dynamics, Functioning, and Resilience
 - Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations. (MS-LS2-4)

- PS3.D: Energy in Chemical Processes and Everyday Life
 - The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (secondary to MS-LS1-6)
 - Cellular respiration in plants and animals involves chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. (secondary to MS-LS1-7)

Crossetting Concepts

- Cause and Effect
 - Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-LS1-2)

- Energy and Matter
 - Matter is conserved because atoms are conserved in physical and chemical processes. (MS-LS1-7)
 - Within a natural system, the transfer of energy drives the motion and/or cycling of matter. (MS-LS1-6)
 - The transfer of energy can be tracked as energy flows through a natural system. (MS-LS2-3)

- Stability and Change
 - Small changes in one part of a system might cause large changes in another part. (MS-LS2-4)

Connections to Nature of Science

- Scientific Knowledge Assumes an Order and Consistency in Natural Systems
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS2-3)

Common Core State Standards Connections:

- The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
<table>
<thead>
<tr>
<th>ELA/Literacy –</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-6),(MS-LS2-1),(MS-LS2-4)</td>
</tr>
<tr>
<td>RST.6-8.2</td>
<td>Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-6)</td>
</tr>
<tr>
<td>RST.6-8.7</td>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS2-1)</td>
</tr>
<tr>
<td>RI.8.8</td>
<td>Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. (MS-LS2-4)</td>
</tr>
<tr>
<td>WHST.6-8.1</td>
<td>Write arguments to support claims with clear reasons and relevant evidence. (MS-LS2-4)</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-6)</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS1-6),(MS-LS2-4)</td>
</tr>
<tr>
<td>SL.8.5</td>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS1-7),(MS-LS2-3)</td>
</tr>
<tr>
<td>Mathematics –</td>
<td></td>
</tr>
<tr>
<td>6.EE.C.9</td>
<td>Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. (MS-LS1-6),(MS-LS2-3)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
MS. I Interdependent Relationships in Ecosystems

MS-LS2-2. Construct an explanation that predicts patterns of interactions among organisms in a variety of ecosystems.

[Clarification Statement: Emphasis is on predicting patterns of interactions such as competition, predation, mutualism, and parasitism in different ecosystems in terms of the relationships among and between organisms.]

MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and protecting ecosystem stability.* [Clarification Statement: Examples of ecosystem protections could include water purification, waste management, nutrient recycling, prevention of soil erosion, and eradication of invasive species. Examples of design solution constraints could include scientific, economic, and social considerations.]

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Constructing explanations and design solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and design solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Conclude an explanation that includes qualitative or quantitative relationships between variables that predict phenomena. (MS-LS2-2)

Engaging in Argument from Evidence

- Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).
- Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-LS2-5)

Disciplinary Core Ideas

LS2A: Interdependent Relationships in Ecosystems

- Similarly, predatory interactions may reduce the number of organisms or eliminate whole populations of organisms. Mutually beneficial interactions, in contrast, may become so interdependent that each organism requires the other for survival. Although the species involved in these competitive, predatory, and mutually beneficial interactions vary across ecosystems, the patterns of interactions of organisms with their environments, both living and nonliving, are shared. (MS-LS2-2)

LS2C: Ecosystem Dynamics, Functioning, and Resilience

- (NYSED) Biodiversity describes the variety of species found in Earth’s ecosystems. The completeness or integrity of an ecosystem’s biodiversity is often used as a measure of its health. (MS-LS2-5)

LS4D: Biodiversity and Humans

- Changes in biodiversity can influence humans’ resources, such as food, energy, and medicines, as well as ecosystem services that humans rely on—for example, water purification and recycling. (secondary to MS-LS2-5)
- (NYSED) Humans impact biodiversity both positively and negatively. (secondary to MS-LS2-5)

ETS1B: Developing Possible Solutions

- There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (secondary to MS-LS2-5)

Crosscutting Concepts

Patterns

- Patterns can be used to identify cause and effect relationships. (MS-LS2-2)

Stability and Change

- Small changes in one part of a system might cause large changes in another part. (MS-LS2-5)

Connections to Other DCIs in this grade-band

- **MS.LS1.B** (MS-LS2-2); **MS.ESS3.C** (MS-LS2-5)

Articulation across grade-band

- **1.LS1.B** (MS-LS2-2); **HS.LS2.A** (MS-LS2-2); **HS.LS2.B** (MS-LS2-2); **HS.LS2.C** (MS-LS2-5); **HS.LS2.D** (MS-LS2-2); **LS4.D** (MS-LS2-5); **HS.ESS3.A** (MS-LS2-5); **HS.ESS3.C** (MS-LS2-5); **HS.ESS3.D** (MS-LS2-5)

Connections to Nature of Science

- **Science Addresses Questions About the Natural and Material World**
 - Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS2-5)

Common Core State Standards Connections

ELA/Literacy –

- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts. (MS-LS2-2)
- **RST.6-8.8** Distinguish among facts, reasoned judgment based on research findings, and speculation in a text. (MS-LS2-5)
- **RI.8.8** Trace and evaluate the argument and specific claims in a text, assessing whether the reasoning is sound and the evidence is relevant and sufficient to support the claims. (MS-LS2-5)
- **WHST.6-8.2** Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS2-2)
- **WHST.6-8.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (MS-LS2-2)
- **SL.8.1** Engage effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grade 8 topics, texts, and issues, building on others’ ideas and expressing their own clearly. (MS-LS2-2)
- **SL.8.4** Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS2-2)

Mathematics –

- **MP.4** Model with mathematics. (MS-LS2-5)
- **6.RP.A.3** Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-LS2-5)
- **6.SP.B.5** Summarize numerical data sets in relation to their context. (MS-LS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

MS. Growth, Development, and Reproduction of Organisms

Students who demonstrate understanding can:

MS-LS1-4. Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants, respectively.
[Clarification Statement: Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.]

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.
[Clarification Statement: Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include the genes responsible for size differences in different breeds of dogs. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.]
[Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, biochemical processes, or natural selection.]

MS-LS3-1. Develop and use a model to explain why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.
[Clarification Statement: Mutations in body cells are not inherited. Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.]
[Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.]

MS-LS3-2. Develop and use a model to describe how sexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.
[Clarification Statement: Emphasis is on using models such as diagrams and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring.]

MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.
[Clarification Statement: Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, selective breeding, gene therapy); and, on the impacts these technologies have on society.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models
Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop and use a model to describe phenomena. (MS-LS1-4), (MS-LS3-2)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific knowledge, principles, and theories.
- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-LS1-5)

Engaging in Argument from Evidence
Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).
- Use an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-LS1-4)

Obtaining, Evaluating, and Communicating Information
Obtaining, evaluating, and communicating information in 6–8 builds on K–5 experiences and progresses to evaluating the merit and validity of ideas and methods.
- Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of each publication and methods used, and describe how they are supported or not supported by evidence. (MS-LS4-5)

Disciplinary Core Ideas

LS1.B: Growth and Development of Organisms
- Organisms reproduce, either sexually or asexually, and transfer their genetic information to their offspring.
 (secondary to MS-LS3-2)
- Animals engage in characteristic behaviors that increase the odds of reproduction. (MS-LS1-4)
- Plants reproduce in a variety of ways, sometimes depending on animal behavior and specialized features for reproduction. (MS-LS1-4)
- Genetic factors as well as local conditions affect the growth of the adult plant. (MS-LS1-5)

LS3.A: Inheritance of Traits
- Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes. Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes (mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby change traits. (MS-LS1-3)
- Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes (and therefore genes) inherited. (MS-LS3-2)
- In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may differ from each other. (MS-LS3-2)
- In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Some changes are beneficial, others harmful, and some neutral to the organism. (MS-LS3-1)
- (NYSED) Mutations may result in changes to the structure and function of proteins. (MS-LS3-1)

LS4.B: Natural Selection
- In artificial selection, humans can have the capacity to influence certain characteristics of organisms by selective breeding. One can choose desired parental traits determined by genes, which are then passed on to offspring. (MS-LS4-5)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural systems. (MS-LS3-2)
- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS1-4), (MS-LS1-5), (MS-LS4-3)

Structure and Function
- Complex and microscopic structures and systems can be visualized, modeled, and used to describe how their function depends on the shapes, composition, and relationships among its parts, therefore complex natural structures/systems can be analyzed to determine how they function. (MS-LS3-1)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Engineering advances have led to important discoveries in virtually every field of science, and scientific discoveries have led to the development of entire industries and engineered systems. (MS-LS4-5)

Connections to Nature of Science

Science Addresses Questions About the Natural and Material World
- Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-LS4-5)

Connections to other DCIs in this grade-band: MS.LS1.A (MS-LS3-1), MS.LS2.A (MS-LS3-4),(MS-LS3-5), MS.LS4.A (MS-LS3-1)

Common Core State Standards Connections:
ELA/Literacy –

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.6-8.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts. (MS-LS1-4),(MS-LS1-5),(MS-LS3-1),(MS-LS3-2),(MS-LS4-5)</td>
</tr>
<tr>
<td>RST.6-8.2</td>
<td>Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions. (MS-LS1-5)</td>
</tr>
<tr>
<td>RST.6-8.4</td>
<td>Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. (MS-LS3-1),(MS-LS3-2)</td>
</tr>
<tr>
<td>RST.6-8.7</td>
<td>Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS3-1),(MS-LS3-2)</td>
</tr>
<tr>
<td>RI.6.8</td>
<td>Trace and evaluate the argument and specific claims in a text, distinguishing claims that are supported by reasons and evidence from claims that are not. (MS-LS1-4)</td>
</tr>
<tr>
<td>WHST.6-8.1</td>
<td>Write arguments focused on discipline content. (MS-LS1-4)</td>
</tr>
<tr>
<td>WHST.6-8.2</td>
<td>Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS1-5)</td>
</tr>
<tr>
<td>WHST.6-8.8</td>
<td>Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-LS3-1),(MS-LS3-2)</td>
</tr>
<tr>
<td>WHST.6-8.9</td>
<td>Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-LS3-1),(MS-LS3-2)</td>
</tr>
</tbody>
</table>

Mathematics –

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.SP.A.2</td>
<td>Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape. (MS-LS1-4),(MS-LS1-5)</td>
</tr>
<tr>
<td>6.SP.B.4</td>
<td>Summarize numerical data sets in relation to their context. (MS-LS1-4),(MS-LS1-5)</td>
</tr>
<tr>
<td>6.SP.B.5</td>
<td>Summarize numerical data sets in relation to their context. (MS-LS3-2)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.</td>
<td>• The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)</td>
<td>• Patterns can be used to identify cause and effect relationships. (MS-LS4-2)</td>
</tr>
<tr>
<td>• Analyze and interpret data to determine similarities and differences in findings. (MS-LS4-1)</td>
<td>• Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)</td>
<td>• Graphs, charts, and images can be used to identify patterns in data. (MS-LS4-1)</td>
</tr>
<tr>
<td>• Using Mathematical and Computational Thinking Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and uses mathematical concepts to support explanations and arguments.</td>
<td>• Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy. (MS-LS4-3)</td>
<td>• Similarities and differences in patterns can be used to sort and classify organisms. (MS-LS4-2)</td>
</tr>
<tr>
<td>• Use mathematical representations to support scientific conclusions and design solutions. (MS-LS4-6)</td>
<td>LS4.B: Natural Selection</td>
<td>Causation and Effect</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>• (NYSED) Natural selection can lead to an increase in the frequency of some traits and the decrease in the frequency of other traits. (MS-LS4-4)</td>
<td>• Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS4-4),(MS-LS4-6)</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.</td>
<td>LS4.C: Adaptation</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>• Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events. (MS-LS4-2)</td>
<td>• Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6)</td>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
<tr>
<td>• Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena. (MS-LS4-4)</td>
<td>Common Core State Standards Connections:</td>
<td>Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Analyzing and Interpreting Data
- Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.
 - Analyze and interpret data to determine similarities and differences in findings. (MS-LS4-1)
 - Using Mathematical and Computational Thinking Mathematical and computational thinking in 6–8 builds on K–5 experiences and progresses to identifying patterns in large data sets and uses mathematical concepts to support explanations and arguments.
 - Use mathematical representations to support scientific conclusions and design solutions. (MS-LS4-6)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events. (MS-LS4-2)
 - Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena. (MS-LS4-4)

Disciplinary Core Ideas

LS4.A: Evidence of Common Ancestry and Diversity
- The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and change of many life forms throughout the history of life on Earth. (MS-LS4-1)
- Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record, enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent. (MS-LS4-2)
- Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fully-formed anatomy. (MS-LS4-3)

LS4.B: Natural Selection
- (NYSED) Natural selection can lead to an increase in the frequency of some traits and the decrease in the frequency of other traits. (MS-LS4-4)

LS4.C: Adaptation
- Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes. (MS-LS4-6)

Crosscutting Concepts

Patterns
- Patterns can be used to identify cause and effect relationships. (MS-LS4-2)
- Graphs, charts, and images can be used to identify patterns in data. (MS-LS4-1)
- Similarities and differences in patterns can be used to sort and classify organisms. (MS-LS4-2)

Causation and Effect
- Phenomena may have more than one cause, and some cause and effect relationships in systems can only be described using probability. (MS-LS4-4),(MS-LS4-6)

Connections to Nature of Science
- **Scientific Knowledge Assumes an Order and Consistency in Natural Systems**
 - Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-LS4-1),(MS-LS4-2)

Common Core State Standards Connections:

ELA/Literacy –
- Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-LS4-1)
- Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3)
- Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-LS4-3),(MS-LS4-4)
- Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-LS4-2),(MS-LS4-4)
- Draw evidence from informational texts to support analysis, reflection, and research. (MS-LS4-2),(MS-LS4-4)
- Engage effectively in a range of collaborative discussions (one-on-one, in groups, teacher-led) with diverse partners on grade 6 topics, texts, and issues.

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
SL.8.4 Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (MS-LS4-2),(MS-LS4-4)

Mathematics –

MP.4 Model with mathematics. (MS-LS4-6)

6.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-LS4-4),(MS-LS4-6)

6.SP.B.5 Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-LS4-1),(MS-LS4-2)

7.RP.A.2 Recognize and represent proportional relationships between quantities. (MS-LS4-4),(MS-LS4-6)
MS. Space Systems

Students who demonstrate understanding can:

MS-ESS1-1. Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the Sun and moon, and seasons.
Clarification Statement: Examples of models could include physical, graphical, or conceptual models.

MS-ESS1-2. Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
Clarification Statement: Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models could include physical models (such as a model of the solar system scaled using various measures or computer visualizations of elliptical orbits) or conceptual models (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).
Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.

MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system.
Clarification Statement: Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties could include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data could include statistical information, drawings and photographs, and models.
Assessment Boundary: does not include recalling facts about properties of the planets and other solar system bodies.

Science and Engineering Practices

Developing and Using Models
- In 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop and use a model to describe phenomena. (MS-ESS1-1) (MS-ESS1-2)

Analyzing and Interpreting Data
- Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.
- Analyze and interpret data to determine similarities and differences in findings. (MS-ESS1-3)

Disciplinary Core Ideas

ESS1.A: The Universe and Its Stars
- Patterns of the apparent motion of the sun, the moon, and stars in the sky can be observed, described, predicted, and explained with models. (MS-ESS1-1)
- Earth and its solar system are part of the Milky Way galaxy, which is one of many galaxies in the universe. (MS-ESS1-2)

ESS1.B: Earth and the Solar System
- (NYSED) The solar system consists of the Sun and a collection of objects, including planets, their moons, comets, and asteroids that are held in orbit around the Sun by its gravitational pull on them. (MS-ESS1-2) (MS-ESS1-3)
- This model of the solar system can explain eclipses of the sun and the moon. Earth’s spin axis is fixed in direction over the short-term but tilted relative to its orbit around the sun. The seasons are a result of that tilt and are caused by the differential intensity of sunlight on different areas of Earth across the year. (MS-ESS1-1)
- The solar system appears to have formed from a disk of dust and gas, drawn together by gravity. (MS-ESS1-2)

Crosscutting Concepts

Patterns
- Patterns can be used to identify cause and effect relationships. (MS-ESS1-1)

Scale, Proportion, and Quantity
- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-3)

Systems and System Models
- Models can be used to represent systems and their interactions. (MS-ESS1-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Engineering advances have led to important discoveries in virtually every field of science and scientific discoveries have led to the development of entire industries and engineered systems. (MS-ESS1-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes that objects and events in natural systems occur in consistent patterns that are understandable through measurement and observation. (MS-ESS1-1) (MS-ESS1-2)

Connections to Other DCIs in this Grade Band:

MS-PS2.A (MS-ESS1-1), (MS-ESS1-2); MS-PS2.B (MS-ESS1-1); MS-ESS2.A (MS-ESS1-3)

Articulation of DCIs across grade bands:

MS-PS2.A (MS-ESS1-1); MS-ESS1-2); MS-ESS1-3); HS-PS2.A (MS-ESS1-1), (MS-ESS1-2), (MS-ESS1-3); HS-PS2.B (MS-ESS1-1); MS-ESS1-2); HS-ESS1.A (MS-ESS1-1), (MS-ESS1-2); HS-ESS1.B (MS-ESS1-1), (MS-ESS1-2), (MS-ESS1-3); HS-ESS2.A (MS-ESS1-1), (MS-ESS1-2), (MS-ESS1-3)

Common Core State Standards Connections:

ELA/Literacy –

RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS1-3)

RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS1-3)

SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS1-1) (MS-ESS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (MS-ESS1-3)

MP.4 Model with mathematics. (MS-ESS1-1) (MS-ESS1-2)

7.RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-ESS1-1) (MS-ESS1-2) (MS-ESS1-3)

7.RPA.2 Recognize and represent proportional relationships between quantities. (MS-ESS1-1) (MS-ESS1-2) (MS-ESS1-3)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS1-2)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS1-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history. [Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events or evidence could include very recent events or evidence (such as the last Ice Age or the earliest fossils of Homo sapiens) to very old events or evidence (such as the formation of Earth or the earliest evidence of life). Examples of evidence could include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them, radiometric dating, or the concept of relative ages.]

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying temporal and spatial scales. [Clarification Statement: Emphasis is on how processes change Earth's surface at temporal and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes could include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.]

MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions. [Clarification Statement: Examples of data could include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Analyzing and Interpreting Data

- Analyze and interpret data to provide evidence for phenomena. (MS-ESS2-3)

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS1-4), (MS-ESS2-2)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

- The geologic time scale interpreted from rock strata provides a way to organize Earth's history. Analyses of rock strata and the fossil record provide only relative dates, not an absolute scale. (MS-ESS1-4)
- Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C GBE) (secondary to MS-ESS2-3)

ESS2.A: Earth's Materials and Systems

- The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a second to billions of years. These interactions have shaped Earth's history and will determine its future. (MS-ESS2-2)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth's plates have moved great distances, collided, and spread apart. (MS-ESS2-3)

ESS2.C: The Roles of Water in Earth's Surface Processes

- Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create underground formations. (MS-ESS2-2)

Connecting to Nature of Science

Scientific Knowledge is Open to Revision in Light of New Evidence

- Science findings are frequently revised and/or reinterpreted on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS1-4), (MS-ESS2-2)

Patterns

- Patterns in rates of change and other numerical relationships can provide information about natural systems. (MS-ESS2-3)

Scale, Proportion, and Quantity

- Time, space, and energy phenomena can be observed at various scales using models to study systems that are too large or too small. (MS-ESS1-4), (MS-ESS2-2)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Science and Engineering Practices

Developing and Using Models
Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop and use a model to describe phenomena. (MS-ESS2-1)
- Develop a model to describe unobservable mechanisms. (MS-ESS2-4)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students’ own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (MS-ESS3-1)

Disciplinary Core Ideas

ESS2.A: Earth’s Materials and Systems
- All Earth processes are the result of energy flowing and matter cycling within and among the planet’s systems. This energy is derived from the sun and Earth’s hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth’s materials and living organisms. (MS-ESS2-1)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- (NYSED) Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation, sublimation, deposition, precipitation, infiltration, and runoff. (MS-ESS2-4)
- (NYSED) Global movements of water and its changes in form are driven by sunlight and gravity. (MS-ESS2-4)

ESS3.A: Natural Resources
- Humans depend on Earth’s land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere resources are limited, and many are not renewable or replaceable over human lifetimes. These resources are distributed unevenly around the planet as a result of past geologic processes. (MS-ESS3-1)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS3-1)
- Within a natural or designed system, the transfer of energy drives the motion and/or cycling of matter. (MS-ESS2-4)

Stability and Change
- Explanations of stability and change in natural or designed systems can be constructed by examining the changes over time and processes at different scales, including the atomic scale. (MS-ESS2-1)

Connections to Other DCIs in this Grade-band
- MS.PS2.A (MS-ESS2-1),(MS-ESS2-4),(MS-ESS3-1);
- MS.PS3.D (MS-ESS2-4);
- MS.LS2.B (MS-ESS2-1);
- MS.LS2.C (MS-ESS2-1);
- MS.PS1.B (MS-ESS2-1);
- MS.PS3.A (MS-ESS2-1);
- MS.PS3.B (MS-ESS2-1);
- MS.PS3.C (MS-ESS2-1);
- MS.PS3.D (MS-ESS2-4);
- MS.PS3.E (MS-ESS2-1);
- MS.PS4.A (MS-ESS2-4);
- MS.ESS1.B (MS-ESS2-1);
- MS.ESS1.C (MS-ESS2-1);
- MS.ESS2.A (MS-ESS2-1);
- MS.ESS2.B (MS-ESS2-1);
- MS.ESS2.C (MS-ESS2-1);
- MS.ESS2.D (MS-ESS2-1);
- MS.ESS2.E (MS-ESS2-1);
- MS.ESS2.F (MS-ESS2-1);
- MS.ESS2.G (MS-ESS2-1);
- MS.ESS2.H (MS-ESS2-1);
- MS.ESS2.I (MS-ESS2-1);
- MS.ESS2.J (MS-ESS2-1);
- MS.ESS2.K (MS-ESS2-1);
- MS.ESS2.L (MS-ESS2-1);
- MS.ESS2.M (MS-ESS2-1);
- MS.ESS2.N (MS-ESS2-1);
- MS.ESS2.O (MS-ESS2-1);
- MS.ESS2.P (MS-ESS2-1);
- MS.ESS2.Q (MS-ESS2-1);
- MS.ESS2.R (MS-ESS2-1);
- MS.ESS2.S (MS-ESS2-1);
- MS.ESS2.T (MS-ESS2-1);
- MS.ESS2.U (MS-ESS2-1);
- MS.ESS2.V (MS-ESS2-1);
- MS.ESS2.W (MS-ESS2-1);
- MS.ESS2.X (MS-ESS2-1);
- MS.ESS2.Y (MS-ESS2-1);
- MS.ESS2.Z (MS-ESS2-1);
- MS.ESS3.A (MS-ESS3-1);
- MS.ESS3.B (MS-ESS3-1);
- MS.ESS3.C (MS-ESS3-1);
- MS.ESS3.D (MS-ESS3-1);
- MS.ESS3.E (MS-ESS3-1);
- MS.ESS3.F (MS-ESS3-1);
- MS.ESS3.G (MS-ESS3-1);
- MS.ESS3.H (MS-ESS3-1);
- MS.ESS3.I (MS-ESS3-1);
- MS.ESS3.J (MS-ESS3-1);
- MS.ESS3.K (MS-ESS3-1);
- MS.ESS3.L (MS-ESS3-1);
- MS.ESS3.M (MS-ESS3-1);
- MS.ESS3.N (MS-ESS3-1);
- MS.ESS3.O (MS-ESS3-1);
- MS.ESS3.P (MS-ESS3-1);
- MS.ESS3.Q (MS-ESS3-1);
- MS.ESS3.R (MS-ESS3-1);
- MS.ESS3.S (MS-ESS3-1);
- MS.ESS3.T (MS-ESS3-1);
- MS.ESS3.U (MS-ESS3-1);
- MS.ESS3.V (MS-ESS3-1);
- MS.ESS3.W (MS-ESS3-1);
- MS.ESS3.X (MS-ESS3-1);
- MS.ESS3.Y (MS-ESS3-1);
- MS.ESS3.Z (MS-ESS3-1);

Common Core State Standards Connections:

- **ELA/Literacy –**
 - RST.6-8.1: Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1)
 - WHST.6-8.2: Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1)
 - WHST.6-8.9: Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1)
 - SL.8.5: Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-1)

- **Mathematics –**
 - 6.EE.B.6: Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1)
 - 7.EE.B.4: Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED)."
Students who demonstrate understanding can:

MS-ESS2-5. Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions. [Clarification Statement: Emphasis is on how air flows from regions of high pressure to low pressure, the complex interactions at air mass boundaries, and the movements of air masses affect weather (defined by temperature, pressure, humidity, precipitation, and wind at a fixed location and time). Emphasis is on how weather can be predicted within probabilistic ranges. Data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment includes the application of weather data systems but does not include recalling the names of cloud types, weather symbols used on weather maps, the reported diagrams from weather stations, or the interrelationship of weather variables.]

MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of Earth cause patterns of atmospheric and oceanic circulation that determine regional climates. [Clarification Statement: Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis is on the sunlit-differentiated latitudinal banding causing differences in density that create convection currents in the atmosphere, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the coastlines of continents. Examples of models could include diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.]

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century. [Clarification Statement: Examples of factors could include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence could include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in the global temperatures.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Disciplinary Core Ideas

ESS2.C: The Roles of Water in Earth’s Surface Processes
- The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. (MS-ESS2-5)
- Variations in density due to variations in temperature and salinity drive a global pattern of interconnected ocean currents. (MS-ESS2-6)

ESS2.D: Weather and Climate
- Weather and climate are influenced by interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things. These interactions vary with latitude, altitude, and local and regional geography, all of which can affect oceanic and atmospheric flow patterns. (MS-ESS2-6)
- Because these patterns are so complex, weather can only be predicted probabilistically. (MS-ESS2-5)
- The ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents. (MS-ESS2-6)

ESS3.D: Global Climate Change
- Human activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise in Earth’s mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerability to whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and other kinds of knowledge, such as understanding of human behavior and on applying knowledge wisely in decisions and activities. (MS-ESS3-5)

Crosscutting Concepts

Cause and Effect
- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS2-5)

Systems and System Models
- Models can be used to represent systems and their interactions—such as inputs, processes and outputs—and energy, matter, and information flows within systems. (MS-ESS2-6)

Stability and Change
- Stability might be disturbed either by sudden events or gradual changes that accumulate over time. (MS-ESS3-5)

Science and Engineering Practices

Asking Questions and Defining Problems
Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models.
- Ask questions to identify and clarify evidence of an argument. (MS-ESS3-5)

Developing and Using Models
Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.
- Develop and use a model to describe phenomena. (MS-ESS2-5)

Planning and Carrying Out Investigations
Planning and carrying out investigations in 6–8 builds on K–5 experiences and progresses to include investigations that use multiple variables and provide evidence to support explanations or solutions.
- Collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions under a range of conditions. (MS-ESS2-5)

Common Core State Standards Connections:

ELA/Literacy –

- **RST.6-8.1** Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS2-5),(MS-ESS3-5)

- **RST.6-8.9** Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ESS2-5)

WHST.6-8.8 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS2-5)

SL.8.5 Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ESS2-6)

MP.2 Reason abstractly and quantitatively. (MS-ESS2-5),(MS-ESS3-5)

6.NS.C.5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-ESS2-5)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-5)

7.EE.B.4 Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-5)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from *A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas* unless it is preceded by (NYSED).*
Students who demonstrate understanding can:

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. [Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards could include those resulting from interior processes (such as earthquakes and volcanic eruptions) and surface processes (such as mass wasting and tsunamis), or from severe weather events (such as blizzards, hurricanes, tornadoes, floods, and droughts). Examples of data could include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies could include global technologies (such as satellite images to monitor hurricanes or forest fires) or local technologies (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).]

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.* [Clarification Statement: Examples of the design process could include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts could include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).]

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems. [Clarification Statement: Examples of evidence could include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts could include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.]

Science and Engineering Practices

Analyzing and Interpreting Data
- Analyzing data in 6–8 builds on K-5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.
- Analyze and interpret data to determine similarities and differences in findings. (MS-ESS3-2)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 6–8 builds on K-5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.
- Apply scientific principles to design an object, tool, process or system. (MS-ESS3-3)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 6–8 builds on K-5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world(s).
- Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem. (MS-ESS3-4)

Disciplinary Core Ideas

ESS3.B: Natural Hazards
- Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events. (MS-ESS3-2)

ESS3.C: Human Impacts on Earth Systems
- Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth’s environments can have different impacts (negative and positive) for different living things. (MS-ESS3-3)
- Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. (MS-ESS3-3), (MS-ESS3-4)

Crosscutting Concepts

Patterns
- Graphs, charts, and images can be used to identify patterns in data. (MS-ESS3-2)

Cause and Effect
- Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. (MS-ESS3-3)
- Cause and effect relationships may be used to predict phenomena in natural or designed systems. (MS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World
- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ESS3-4)
- The uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time. (MS-ESS3-2), (MS-ESS3-3)

Science Addresses Questions About the Natural and Material World

Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the decisions that society takes. (MS-ESS3-4)

Connections to Nature of Science
- New York State P-12 Science Learning Standards

Reason abstractly and quantitatively. (MS-ESS3-2)
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.RP.A.1</td>
<td>Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-ESS3-3),(MS-ESS3-4)</td>
</tr>
<tr>
<td>7.RP.A.2</td>
<td>Recognize and represent proportional relationships between quantities. (MS-ESS3-3),(MS-ESS3-4)</td>
</tr>
<tr>
<td>6.EE.B.6</td>
<td>Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-2),(MS-ESS3-3),(MS-ESS3-4)</td>
</tr>
<tr>
<td>7.EE.B.4</td>
<td>Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-2),(MS-ESS3-3),(MS-ESS3-4)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

MS. Engineering Design

Students who demonstrate understanding can:

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed tool, object, or process such that an optimal design can be achieved.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in grades 6–8 builds on grades K–5 experiences and progresses to specifying questions in terms of relationships between variables, and clarifying arguments and models.

- Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions. (MS-ETS1-1)

Developing and Using Models

Modeling in 6–8 builds on K–5 experiences and progresses to developing, using, and revising models to describe, test, and predict more abstract phenomena and design systems.

- Develop a model to generate data to test ideas about designed systems, including those representing inputs and outputs. (MS-ETS1-4)

Analyzing and Interpreting Data

Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis.

- Analyze and interpret data to determine similarities and differences in findings. (MS-ETS1-3)

Engaging in Argument from Evidence

Engaging in argument from evidence in 6–8 builds on K–5 experiences and progresses to constructing a convincing argument that supports or refutes claims for either explanations or solutions about the natural and designed world.

- Evaluate competing design solutions based on jointly developed and agreed-upon design criteria. (MS-ETS1-2)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

- The more precisely a design task’s criteria and constraints can be defined, the more likely it is that the designed solution will be successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that are likely to limit possible solutions. (MS-ETS1-1)

ETS1.B: Developing Possible Solutions

- A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (MS-ETS1-4)

- There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. (MS-ETS1-2), (MS-ETS1-3)

- Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. (MS-ETS1-3)

- Models of all kinds are important for testing solutions. (MS-ETS1-4)

ETS1.C: Optimizing the Design Solution

- Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design. (MS-ETS1-3)

- The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to greater refinement and ultimately to an optimal solution. (MS-ETS1-4)

Crosscutting Concepts

Influence of Science, Engineering, and Technology on Society and the Natural World

- All human activity draws on natural resources and has both short and long-term consequences, positive as well as negative, for the health of people and the natural environment. (MS-ETS1-1)

- The uses of technologies and limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. (MS-ETS1-1)

Common Core State Standards Connections:

ELA/Literacy –

RST.6-8.1. Cite specific textual evidence to support analysis of science and technical texts. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3)

RST.6-8.7. Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ETS1-2)

RST.6-8.9. Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic. (MS-ETS1-2), (MS-ETS1-3)

WHST.6-8.7. Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ETS1-2)

WHST.6-8.8. Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ETS1-1)

WHST.6-8.9. Draw evidence from informational texts to support analysis, reflection, and research. (MS-ETS1-2)

SL.8.5. Integrate multimedia and visual displays into presentations to clarify information, strengthen claims and evidence, and add interest. (MS-ETS1-4)

Mathematics –

MP.2. Reason abstractly and quantitatively. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3), (MS-ETS1-4)

7.EE.3. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. (MS-ETS1-1), (MS-ETS1-2), (MS-ETS1-3)

7.SP. Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (MS-ETS1-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.]

HS-PS1-3. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles. [Clarification Statement: Emphasis is on understanding the strengths of forces between particles in solids, liquids, and gases, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and network solids. Examples of bulk scale properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.]

HS-PS1-8. Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay. [Clarification Statement: Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations.] [Assessment Boundary: Assessment does not include quantitative calculation of energy released. Assessment is limited to alpha, beta, positron, and gamma radioactive decays.]

HS-PS2-6. Communicate scientific and technical information about why the particulate-level structure is important in the functioning of designed materials.* [Clarification Statement: Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.] [Assessment Boundary: Assessment is limited to provided particulate structures of specific designed materials.]

HS-PS1-9. Analyze data to support the claim that the combined gas law describes the relationships among volume, pressure, and temperature for a sample of an ideal gas. [Clarification Statement: Real gases may be included at conditions near STP. The relationships of the variables in the combined gas law may be described both qualitatively and quantitatively.] [Assessment Boundary: Assessment is limited to the relationships among the variables of the combined gas law, not the gas law names, i.e. Boyle’s Law.]

HS-PS1-10. Use evidence to support claims regarding the formation, properties, and behaviors of solutions at bulk scales. [Clarification Statement: Examples of physical properties could include colligative properties, degree of saturation, physical behavior of solutions, solvation process and conductivity. Examples of solution types could include solid-liquid, liquid-liquid, and gas-liquid solutions. Concentrations can be quantitatively expressed in ppm, molarity, and percent by mass] [Assessment Boundary: Assessment of colligative properties is limited to qualitative statements of boiling point elevation and freezing point depression.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.
<table>
<thead>
<tr>
<th>Connections to other DCIs in this grade-band:</th>
<th>HS.PS3.A (HS-PS1-8); HS.PS3.B (HS-PS1-8); HS.PS3.C (HS-PS1-8); HS.PS3.D (HS-PS1-8); HS.LS1.C (HS-PS1-1); HS.ESS1.A (HS-PS1-8); HS.ESS1.C (HS-PS1-8); HS.ESS2.C (HS-PS1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation to DCIs across grade-bands:</td>
<td>MS.PS1.A (HS-PS1-1),(HS-PS1-3),(HS-PS1-8), (HS-PS2-6); MS.PS1.B (HS-PS1-1), (HS-PS1-8); MS.PS1.C (HS-PS1-8); MS.PS2.B (HS-PS1-3),(HS-PS2-6); MS.ESS2.A (HS-PS1-8)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

ELA/Literacy –

<table>
<thead>
<tr>
<th>Common Core State Standards</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.9-10.7</td>
<td>Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words. (HS-PS1-1)</td>
</tr>
<tr>
<td>RST.11-12.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS1-3),(HS-PS1-10),(HS-PS2-6)</td>
</tr>
<tr>
<td>WHST.9-12.7</td>
<td>Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS1-3)</td>
</tr>
<tr>
<td>WHST.11-12.8</td>
<td>Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS1-3),(HS-PS1-9)</td>
</tr>
<tr>
<td>WHST.9-12.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS1-3),(HS-PS1-10)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-PS1-8),(HS-PS1-9)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS1-3),(HS-PS1-8),(HS-PS1-9),(HS-PS2-6)</td>
</tr>
<tr>
<td>HSN-Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-PS1-8),(HS-PS2-6)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS1-3),(HS-PS1-8),(HS-PS1-10),(HS-PS2-6)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Chemical Reactions

Students who demonstrate understanding can:

HS-PS1-2. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. [Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.]

HS-PS1-4. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. [Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a reaction from the bond energies of reactants and products.]

HS-PS1-5. Apply scientific principles and evidence to explain how the rate of a physical or chemical change is affected when conditions are varied. [Clarification Statement: Explanations should be based on three variables in collision theory: number of collisions per unit time, particle orientation on collision, and energy required to produce the change. Conditions that affect these three variables include temperature, pressure, nature of reactants, concentrations of reactants, mixing, particle size, surface area, and addition of a catalyst.] [Assessment Boundary: Assessment is limited to simple reactions in which there are only two reactants and to specifying the change in only one condition at a time.]

HS-PS1-6. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. [Clarification Statement: Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.]

HS-PS1-7. Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. [Clarification Statement: Emphasis is on using mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the macroscopic scale. Emphasis is on assessing students’ use of mathematical thinking and not on memorization and rote application of problem-solving techniques.] [Assessment Boundary: Assessment does not include complex chemical reactions.]

HS-PS1-11. Use evidence to construct an explanation for the properties and behaviors of acids and bases. [Clarification Statement: Examples of properties could include pH values (concentration), neutralization capability and conductivity. Observations of behaviors could include the effects on indicators, reactions with other substances, and efficacy in performing titrations.] [Assessment Boundary: Reactions are limited to Arrenius and Bronsted-Lowry acid-base reactions.]

HS-PS1-12. Use evidence to illustrate that some chemical reactions involve the transfer of electrons as an energy conversion occurs within a system. [Clarification Statement: Evidence could include half-reactions, net ionic equations, and electrochemical cells to illustrate the mechanism of electron transfer.] [Assessment Boundary: Assessment is limited to completing and/or balancing oxidation and reduction half-reactions. Energy conversions are limited to qualitative statements.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Developing and Using Models
Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.

- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS1-4)

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

- Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS1-11)

- Select appropriate tools to collect, record, analyze, and evaluate data. (HS-PS1-11)

Using Mathematics and Computational Thinking
Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis, data representation, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical representations of phenomena to support claims. (HS-PS1-7)

Constructing Explanations and Designing Solutions
Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

- Apply scientific principles and evidence to provide an explanation of phenomena and solve design problems, taking

Disciplinary Core Ideas

- The periodic table orders elements horizontally by the number of protons in the atom’s nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states. (HS-PS1-2) (Note: This Disciplinary Core Idea is also addressed by HS-PS1-1.)
- A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the molecule apart. (HS-PS1-4)

PS1.B: Chemical Reactions
- The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to describe and predict chemical reactions. (HS-PS1-2),(HS-PS1-7)
- (NYSED) Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of particles and the rearrangements of particles into new substances, with subsequent changes in the sum of all bond energies in the set of substances that are matched by changes in energy. (HS-PS1-4),(HS-PS1-5)
- (NYSED) In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of particles present. (HS-PS1-6)
- (NYSED) Acids and bases play an important role in the daily lives of humans and other organisms (e.g., agricultural applications, environmental impacts (acid rain), animal and plant physiology).
- (NYSED) Oxidation-reduction reactions are the prevailing source of power for many of today’s modern conveniences.

ETS1.C: Optimizing the Design Solution
- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS1-2)

Crosscutting Concepts

Patterns
- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS1-2),(HS-PS1-5),(HS-PS1-11)

Energy and Matter
- The total amount of energy and matter in closed systems is conserved. (HS-PS1-7),(HS-PS1-12)
- Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-PS1-4),(HS-PS1-12)

Stability and Change
- Much of science deals with constructing explanations of how things change and how they remain stable. (HS-PS1-6)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Science assumes the universe is a vast single system in which basic laws are consistent. (HS-PS1-7)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Connections to other DCIs in this grade-band:</th>
<th>HS.PS1.A (HS-PS1-2),(HS-PS1-4),(HS-PS1-5); HS.PS3.B (HS-PS1-4),(HS-PS1-6),(HS-PS1-7); HS.PS3.D (HS-PS1-4); HS.LS1.C (HS-PS1-2),(HS-PS1-4),(HS-PS1-7); HS.LS2.B (HS-PS1-5); HS.ESS2.C (HS-PS1-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation to DCIs across grade-bands:</td>
<td>MS.PS1.A (HS-PS1-2),(HS-PS1-4),(HS-PS1-5),(HS-PS1-7); MS.PS1.B (HS-PS1-2),(HS-PS1-4),(HS-PS1-5),(HS-PS1-6),(HS-PS1-7); MS.PS2.B (HS-PS1-3),(HS-PS1-4),(HS-PS1-5); MS.PS3.A (HS-PS1-5); MS.PS3.B (HS-PS1-5); MS.PS3.D (HS-PS1-4), MS.LS1.C (HS-PS1-4),(HS-PS1-7); MS.LS2.B (HS-PS1-7); MS.ESS2.A (HS-PS1-7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Core State Standards Connections:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELA/Literacy –</td>
</tr>
<tr>
<td>RST.11-12.1</td>
</tr>
<tr>
<td>WHST.9-12.2</td>
</tr>
<tr>
<td>WHST.9-12.5</td>
</tr>
<tr>
<td>WHST.9-12.7</td>
</tr>
<tr>
<td>SL.11-12.5</td>
</tr>
<tr>
<td>Mathematics –</td>
</tr>
<tr>
<td>MP.2</td>
</tr>
<tr>
<td>MP.4</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
</tr>
<tr>
<td>HSN-Q.A.2</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Forces and Interactions

Students who demonstrate understanding can:

HS-PS2-1. Analyze data to support the claim that Newton’s Second Law of Motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration. [Clarification Statement: Examples of data could include tables, graphs, or diagrams (vector diagrams) for objects subject to a net unbalanced force (a falling object, an object sliding down a ramp, an object being acted on by friction, a moving object being pulled by a constant force, projectile motion, or an object moving in a circular motion), for objects in equilibrium (Newton’s First Law), or for forces describing the interaction between two objects (Newton’s Third Law).] [Assessment Boundary: Assessment is limited to macroscopic objects moving at non-relativistic speeds whose measured quantities can be classified as either vector or scalar.]

HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]

HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.* [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.]

HS-PS2-4. Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects. [Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of gravitational and electric forces.] [Assessment Boundary: Assessment is limited to systems with two objects.]

HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current. [Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.]

Science and Engineering Practices

Planning and Carrying Out Investigations
- Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models.
 - Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5)

Analyzing and Interpreting Data
- Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
 - Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1)

Using Mathematics and Computational Thinking
- Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models.
 - Use mathematical representations of phenomena to describe explanations. (HS-PS2-2),(HS-PS2-4)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explaining and designing that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)

Disciplinary Core Ideas

PS2.A: Forces and Motion
- Newton’s second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1)
- Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2)
- If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2),(HS-PS2-3)

PS2.B: Types of Interactions
- Newton’s law of universal gravitation and Coulomb’s law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4)
- Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4),(HS-PS2-5)

Crosscutting Concepts

Patterns
- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4)

Cause and Effect
- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-1),(HS-PS2-5)
- Systems can be designed to cause a desired effect. (HS-PS2-3)

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena
- Theories and laws provide explanations in science. (HS-PS2-1),(HS-PS2-4)
- Laws are statements or descriptions of the relationships among observable phenomena. (HS-PS2-1),(HS-PS2-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.11-12.7</td>
<td>Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)</td>
</tr>
<tr>
<td>WHST.9-12.7</td>
<td>Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS2-3),(HS-PS2-5)</td>
</tr>
<tr>
<td>WHST.11-12.8</td>
<td>Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS2-5)</td>
</tr>
<tr>
<td>WHST.9-12.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1),(HS-PS2-5)</td>
</tr>
<tr>
<td>Mathematics –</td>
<td></td>
</tr>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)</td>
</tr>
<tr>
<td>HSN-Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1),(HS-PS2-2),(HS-PS2-4),(HS-PS2-5)</td>
</tr>
<tr>
<td>HSA-SSE.A.1</td>
<td>Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1),(HS-PS2-4)</td>
</tr>
<tr>
<td>HSA-SSE.B.3</td>
<td>Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-1),(HS-PS2-4)</td>
</tr>
<tr>
<td>HSA-CED.A.1</td>
<td>Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-1),(HS-PS2-2)</td>
</tr>
<tr>
<td>HSA-CED.A.2</td>
<td>Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)</td>
</tr>
<tr>
<td>HSA-CED.A.4</td>
<td>Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1),(HS-PS2-2)</td>
</tr>
<tr>
<td>HSF-I.F.C.7</td>
<td>Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. (HS-PS2-1)</td>
</tr>
<tr>
<td>HSS-ID.A.1</td>
<td>Represent data with plots on the real number line (dot plots, histograms, and box plots). (HS-PS2-1)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions for energy, work, and power used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to work, power, thermal energy, kinetic energy, potential energy, electrical energy and/or the energies in gravitational, magnetic, or electric fields.]

HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects). [Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to the position of an object above Earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rubi Goldberg devices, wind turbines, solar panels, light level meters, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). [Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.]

HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction. [Clarification Statement: Examples of models could include diagrams, texts, algebraic expressions, and drawings representing what happens when two charges of opposite polarity are near each other.] [Assessment Boundary: Assessment is limited to systems containing two objects.]

HS-PS3-6. Analyze data to support the claim that Ohm's Law describes the mathematical relationship among the potential difference, current, and resistance of an electric circuit. [Clarification Statement: Emphasis should be on arrangements of series circuits and parallel circuits using conventional current.] [Assessment Boundary: Assessment is limited to direct current (DC) circuits.]

Crosscutting Concepts

Patterns

- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS3-6)
- Mathematical representations can be used to identify certain patterns. (HS-PS3-6)

Cause and Effect

- Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-5)
- Systems and System Models
 - When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-PS3-4)
 - Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS-PS3-1)

Energy and Matter

- Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-PS3-3)
- Energy can be transferred between one place and another place, between objects and/or fields, or between systems. (HS-PS3-2),(HS-PS3-6)

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and engineering

The performance expectations were developed using the following elements from the NRC document A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
phenomenon, designed device, process, or system. (HS-PS3-1)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

- Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS3-3)

ETS1.A: Defining and Delimiting Engineering Problems

- Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)

Connections to Nature of Science

Scientific Knowledge Assumes an Order and Consistency in Natural Systems

- Science assumes the universe is a vast single system in which basic laws are consistent. (HS-PS3-1)

Connections to other DCIs in this grade-band:

- **HS.PS1.A** (HS-PS3-2); **HS.PS1.B** (HS-PS3-1),(HS-PS3-2); **HS.PS2.B** (HS-PS3-2),(HS-PS3-5); **HS.LS2.B** (HS-PS3-1); **HS.ESS1.A** (HS-PS3-1),(HS-PS3-4); **HS.ESS2.A** (HS-PS3-1),(HS-PS3-2),(HS-PS3-4); **HS.ESS2.D** (HS-PS3-4); **HS.ESS3.A** (HS-PS3-3)

Articulation to DCIs across grade-bands:

- **MS.PS1.A** (HS-PS3-2); **MS.PS2.B** (HS-PS3-2),(HS-PS3-5); **MS.PS3.A** (HS-PS3-1),(HS-PS3-2),(HS-PS3-3); **MS.PS3.B** (HS-PS3-1),(HS-PS3-3), (HS-PS3-4); **MS.PS3.C** (HS-PS3-2),(HS-PS3-5); **HS.ESS1.A** (HS-PS3-1),(HS-PS3-2),(HS-PS3-3)

Common Core State Standards Connections:

- **ELA/Literacy –**
 - **RST.11-12.1** Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS3-4),(HS-PS3-6)
 - **WHST.9-12.7** Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-3),(HS-PS3-4),(HS-PS3-5)
 - **WHST.11-12.8** Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-4),(HS-PS3-5)
 - **WHST.9-12.9** Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1),(HS-PS3-2),(HS-PS3-5)

- **Mathematics –**
 - **MP.2** Reason abstractly and quantitatively. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5),(HS-PS3-6)
 - **MP.4** Model with mathematics. (HS-PS3-1),(HS-PS3-2),(HS-PS3-3),(HS-PS3-4),(HS-PS3-5),(HS-PS3-6)
 - **HSN-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1),(HS-PS3-3),(HS-PS3-6)
 - **HSN-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1),(HS-PS3-3),(HS-PS3-6)
 - **HSN-Q.A.3** Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1),(HS-PS3-3)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

HS. Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the period, frequency, wavelength, and speed of waves traveling and transferring energy (amplitude, frequency) in various media.

[Clarification Statement: Examples of tables could include descriptions of waves classified as transverse, longitudinal, mechanical, or standing, electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, seismic waves traveling through Earth, and direction of waves due to reflection and refraction.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

HS-PS4-2. Evaluate questions about the advantages of using a digital transmission and storage of information.

[Clarification Statement: Examples of advantages could include that digital information is stable because it can be stored reliably in computer memory, transferred easily, and copied and shared rapidly. Disadvantages could include issues of easy deletion, security, and theft.]

HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model (quantum theory), and that for some situations one model is more useful than the other.

[Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.] [Assessment Boundary: Assessment of the photoelectric effect is limited to qualitative descriptions.]

HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

[Clarification Statement: Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include scientific journals, trade books, magazines, web resources, videos, and other passages that may reflect bias.] [Assessment Boundary: Assessment is limited to qualitative information. Assessments do not include band theory.]

HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.*

[Clarification Statement: Examples could include Doppler effect, solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessment is limited to analysis of plane, convex, and concave mirrors, and biconvex and biconcave lenses.]

HS-PS4-6. Use mathematical models to determine relationships among the size and location of objects, and focal lengths of lenses and mirrors.

[Clarification Statement: Emphasis should be on analyzing ray diagrams to determine image size and location.] [Assessment Boundary: Assessment is limited to analysis of plane, convex, and concave mirrors, and biconvex and biconcave lenses.]

Science and Engineering Practices

- Asking Questions and Defining Problems
 - Asking questions and defining problems in grades 9–12 builds from K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
 - Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2)

- Using Mathematics and Computational Thinking
 - Mathematical and computational thinking at the 9–12 level builds on K–8 mathematical and computational thinking by adding new content areas, and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
 - Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1), (HS-PS4-6)

Engaging in Argument from Evidence

- Engaging in Argument from Evidence
 - Engaging in argument from evidence in grades 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and human-designed worlds. Arguments may also come from current scientific or historical episodes in science.
 - Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)

Obtaining, Evaluating, and Communicating Information

- Obtaining, Evaluating, and Communicating Information
 - Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs.
 - Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4)
 - Communicate technical information or ideas (e.g. about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)

Disciplinary Core Ideas

PS3.D: Energy in Chemical Processes
 - Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. (secondary to HS-PS4-5)

PS4.A: Wave Properties
 - The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)
 - Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2), (HS-PS4-5)
 - From the 3–5 grade band endpoints Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)
 - (NYSED) The location and size of an image are related to the location and size of an object for a plane mirror. The location and size of an image (real or virtual) are related to the location and size of an object and the focal distance for convex and concave mirrors. (HS-PS4-6)
 - (NYSED) The location and size of an image (real or virtual) are related to the location and size of an object and the focal distance for biconvex and biconcave lenses. (HS-PS4-6)

PS4.B: Electromagnetic Radiation
 - Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. (HS-PS4-3)
 - When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)
 - Photovoltaic materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

PS4.C: Information Technologies and

Crosscutting Concepts

Patterns
 - Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for cause and effect explanations of phenomena. (HS-PS4-6)
 - Mathematical representations can be used to identify certain patterns. (HS-PS4-6)
 - Systems can be designed to cause a desired effect. (HS-PS4-5)

Systems and System Models
 - Models (e.g., physical, mathematical-computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—within and between systems at different scales. (HS-PS4-3)

Stability and Change
 - Systems can be designed for greater or lesser stability. (HS-PS4-2)

Connections to Engineering, Technology, and Applications of Science

Interdependence of Science, Engineering, and Technology
 - Science and engineering complement each other in the cycle known as research and development (R&D). (HS-PS4-4)

Influence of Engineering, Technology, and Science on Society and the Natural World
 - Modern civilization depends on major

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Instrumentation</th>
<th>Connections to other DCIs in this grade-band:</th>
<th>Articulation to DCIs across grade-bands:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-3)</td>
<td>HS.PS1.C (HS-PS4-4); HS.PS3.A (HS-PS4-4),(HS-PS4-5); HS.PS3.D (HS-PS4-3),(HS-PS4-4); HS.LS1.C (HS-PS4-4); HS.ESS1.A (HS-PS4-3); HS.ESS2.A (HS-PS4-1); HS.ESS2.D (HS-PS4-3);</td>
<td>MS.PS3.D (HS-PS4-4); MS.PS4.A (HS-PS4-1),(HS-PS4-2),(HS-PS4-5); MS.PS4.B (HS-PS4-1),(HS-PS4-2),(HS-PS4-3),(HS-PS4-4),(HS-PS4-5); MS.PS4.C (HS-PS4-2),(HS-PS4-5); MS.LS1.C (HS-PS4-4); HS.ESS2.D (HS-PS4-4);</td>
</tr>
</tbody>
</table>

- Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS4-2)

Connections to Core State Standards Connections:

ELA/Literacy –

RST.9-10.8	Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-2),(HS-PS4-3),(HS-PS4-4)
RST.11-12.1	Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-2),(HS-PS4-3),(HS-PS4-4)
RST.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS4-1),(HS-PS4-2),(HS-PS4-3),(HS-PS4-4)
RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-2),(HS-PS4-3),(HS-PS4-4)
WHST.9-12.2	Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-PS4-5)
WHST.11-12.8	Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS4-4)

Mathematics –

MP.2	Reason abstractly and quantitatively. (HS-PS4-1),(HS-PS4-3),(HS-PS4-6)
MP.4	Model with mathematics. (HS-PS4-1),(HS-PS4-6)
HSA- SSE.A.1	Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1),(HS-PS4-3),(HS-PS4-6)
HSA- SSE.B.3	Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS4-1),(HS-PS4-3),(HS-PS4-6)
HSA.CED.A.4	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS4-1),(HS-PS4-3),(HS-PS4-6)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the “Disciplinary Core Ideas” section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Structure and Function

Students who demonstrate understanding can:

HS-LS1-1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells. [Clarification Statement: Emphasis should be on how the DNA code is transcribed and translated in the synthesis of proteins. Types of proteins involved in performing life functions include enzymes, structural proteins, cell receptors, hormones, and antibodies.] [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the detailed biochemistry of protein synthesis.]

HS-LS1-2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms. [Clarification Statement: Emphasis is on functions at the organism's system level such as nutrient uptake, water delivery, immune response, and organism response to stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.]

HS-LS1-3. Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. [Clarification Statement: Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.]

Science and Engineering Practices

Developing and Using Models
Modeling in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Planning and Carrying Out Investigations
Planning and carrying out in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

Constructing Explanations and Designing Solutions
Constructing explanations in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.

Disciplinary Core Ideas

LS1.A: Structure and Function
- Systems of specialized cells within organisms help them perform the essential functions of life. (HS-LS1-1)
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins, which carry out most of the work of cells. (HS-LS1-1; Note: This Disciplinary Core Idea is also addressed by HS-LS3-1.)
- Multicellular organisms have a hierarchical structural organization, in which any one system is made up of numerous parts and is itself a component of the next level. (HS-LS1-2)
- Feedback mechanisms maintain a living system’s internal conditions within certain limits and mediate behaviors, allowing it to remain alive and functional even as external conditions change within some range. Feedback mechanisms can either encourage (through positive feedback) or discourage (negative feedback) what is going on inside the living system. (HS-LS1-3)
- Disease is a failure of homeostasis. Organisms have a variety of mechanisms to prevent and combat disease. (HS-LS1-2, HS-LS1-3)

Crosscutting Concepts

System and System Models
- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—within and between systems at different scales. (HS-LS1-2)
- Investigating or designing new systems or structures requires a detailed examination of the properties of different materials, the structures of different components, and connections of components to reveal its function and/or solve a problem. (HS-LS1-1)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-LS1-3)

Scientific Inquiries Use a Variety of Methods
- Scientific inquiry is characterized by a common set of values that include: logical thinking, precision, open-mindedness, objectivity, skepticism, replicability of results, and honest and ethical reporting of findings. (HS-LS1-1)

Connections to Nature of Science

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS1-1)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS1-1)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS1-3)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-LS1-3)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-1)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

HS-LS1-5. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy. [Clarification Statement: Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.]

HS-LS1-6. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements such as nitrogen, sulfur, and phosphorus to form amino acids and other carbon-based molecules. [Clarification Statement: Emphasis is on using evidence from models and simulations to support explanations for the synthesis of lipids, starches, proteins, and nucleic acids.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of structural and molecular formulas for macromolecules.]

HS-LS1-7. Use a model to illustrate that aerobic cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy. [Clarification Statement: Emphasis is on the conceptual understanding of the inputs and outputs of the process of aerobic cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in aerobic cellular respiration.]

HS-LS2-3. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in ecosystems. [Clarification Statement: Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration and photosynthesis within ecosystems.] [Assessment Boundary: Assessment does not include the specific chemical processes of aerobic respiration, anaerobic respiration, and photosynthesis.]

HS-LS2-4. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem. [Clarification Statement: Emphasis is on using a mathematical model such as a pyramid of biomass/energy to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]

HS-LS2-5. Develop a model to illustrate the role of various processes in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere. [Clarification Statement: Examples of models could include simulations, diagrams, and mathematical models of the carbon cycle (photosynthesis, respiration, decomposition, and combustion).] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Disciplinary Core Ideas

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars plus released oxygen. (HS-LS1-5)</td>
<td>Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes. (HS-LS2-3)</td>
</tr>
<tr>
<td>As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products. As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. (HS-LS1-6),(HS-LS1-7)</td>
<td>Plants or algae form the lowest level of the food web. At each link upward in a food web, only a small fraction of the matter consumed at the lower level is transferred upward, to produce growth and release energy in cellular respiration at the higher level. Given this inefficiency, there are generally fewer organisms at higher levels of a food web. The chemical elements that make up the molecules of organisms pass through food webs and into and out of the atmosphere and soil, and they are combined and recombined in different ways. At each link in an ecosystem, matter and energy are conserved. (HS-LS2-4)</td>
</tr>
<tr>
<td>(NYSED) Sugar molecules contain carbon, hydrogen, and oxygen. Their hydrocarbon backbones combine with other elements to make amino acids and other carbon-based molecules that can be assembled into larger molecules, such as proteins or DNA. (HS-LS1-6)</td>
<td>(NYSED) Cellular respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are formed. In this process ATP is produced, which is used to carry out life processes. (HS-LS1-7)</td>
</tr>
<tr>
<td>(NYSED) When matter is cycled through organisms and ecosystems, some of the matter reacts to release energy for life functions, some is stored in newly made structures, and some is eliminated as waste. (HS-LS2-4)</td>
<td>(NYSED) Photosynthesis and cellular respiration are important components of the carbon cycle, in which carbon is exchanged among the biosphere, atmosphere, hydrosphere, and geosphere through chemical, physical, geological, and biological processes. (HS-LS2-5)</td>
</tr>
</tbody>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Systems and System Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows—within and between systems at different scales. (HS-LS2-5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy and Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-LS1-5), (HS-LS1-6)</td>
</tr>
<tr>
<td>Energy can be transferred between one place and another between objects in fields, or between systems. (HS-LS1-7),(HS-LS2-4)</td>
</tr>
<tr>
<td>Energy drives the cycling of matter within and between systems. (HS-LS2-3)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Connections to other DCIs in this grade-band:</th>
<th>HS.PS1.B (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-LS2-5); HS.PS2.B (HS-LS1-7); HS.PS3.B (HS-LS1-5),(HS-LS1-7),(HS-LS2-3),(HS-LS2-4); HS.PS3.D (HS-LS2-3),(HS-LS2-4); HS.ESS2.A (HS-LS2-3); HS.ESS2.D (HS-LS2-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation across grade-bands:</td>
<td>MS.PS1.A (HS-LS1-6); MS.PS1.B (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3); MS.PS3.D (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-LS2-4),(HS-LS2-5); MS.LS1.C (HS-LS1-5),(HS-LS1-6),(HS-LS1-7),(HS-LS2-3),(HS-LS2-4),(HS-LS2-5); MS.LS2.B (HS-LS1-5),(HS-LS1-7),(HS-LS2-3),(HS-LS2-4),(HS-LS2-5); MS.ESS2.A (HS-LS2-5); MS.ESS2.E (HS-LS1-6)</td>
</tr>
<tr>
<td>Common Core State Standards Connections:</td>
<td>ELA/Literacy –</td>
</tr>
<tr>
<td>RST.11-12.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS1-6),(HS-LS2-3)</td>
</tr>
<tr>
<td>WHST.9-12.2</td>
<td>Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-LS1-6),(HS-LS2-3)</td>
</tr>
<tr>
<td>WHST.9-12.5</td>
<td>Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS1-6),(HS-LS2-3)</td>
</tr>
<tr>
<td>WHST.9-12.9</td>
<td>Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-6)</td>
</tr>
<tr>
<td>SL.11-12.5</td>
<td>Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-5),(HS-LS1-7)</td>
</tr>
<tr>
<td>Mathematics –</td>
<td></td>
</tr>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-LS2-4)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-LS2-4)</td>
</tr>
<tr>
<td>HSN.Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-4)</td>
</tr>
<tr>
<td>HSN.Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-4)</td>
</tr>
<tr>
<td>HSN.Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-4)</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Core Ideas</th>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS. Interdependent Relationships in Ecosystems</td>
<td>LS2.A: Interdependent Relationships in Ecosystems</td>
</tr>
<tr>
<td>*Ecosystems have carrying capacities, which are limits to the numbers of organisms and populations they can support. Organisms would have the capacity to produce populations of great size were it not for the fact that environments and resources are finite. This fundamental tension affects the abundance (number of individuals) of species in any given ecosystem. (HS-LS2-1),(HS-LS2-2) (NYSED) Carrying capacity results from the availability of biotic and abiotic factors and from challenges such as predation, competition, and disease. (HS-LS2-1),(HS-LS2-2)</td>
<td></td>
</tr>
<tr>
<td>LS2.C: Ecosystem Dynamics, Functioning, and Resilience</td>
<td>*A complex set of interactions within an ecosystem can keep its numbers and types of organisms relatively constant over long periods of time under stable conditions. If a modest biological or physical disturbance to an ecosystem occurs, it may return to its more or less original status (i.e., the ecosystem is resilient), as opposed to becoming a very different ecosystem. Extreme fluctuations in conditions or the size of any population, however, can challenge the functioning of ecosystems in terms of resources and habitat availability. (HS-LS2-2),(HS-LS2-6) Moreover, anthropogenic changes (induced by human activity) in the environment—including habitat destruction, pollution, introduction of invasive species, overexploitation, and climate change—can disrupt an ecosystem and threaten the survival of some species. (HS-LS2-7)</td>
</tr>
<tr>
<td>LS2.D: Social Interactions and Group Behavior</td>
<td>*Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives. (HS-LS2-8)</td>
</tr>
<tr>
<td>LS4.D: Biodiversity and Humans</td>
<td>*Biodiversity is increased by the formation of new species (speciation) and decreased by the loss of species (extinction). (secondary to HS-LS2-7) Humans depend on the living world for the resources and other benefits provided by biodiversity. But human activity is also having adverse impacts on biodiversity through overpopulation, overexploitation, habitat destruction, pollution, introduction of invasive species, and climate change. Thus sustaining biodiversity that ecosystem functioning and productivity are maintained is essential to supporting and enhancing life on Earth. Sustaining biodiversity also aids humanity by preserving landscapes of recreational or inspirational value. (secondary to HS-LS2-7)</td>
</tr>
</tbody>
</table>

ETS1.B: Developing Possible Solutions
When evaluating solutions, it is important to take into account the following factors:

- **Cause and Effect**
 Empirical evidence is required to differentiate between cause and effect and make claims about specific causes and effects. (HS-LS2-7),(HS-LS2-8)

- **Scale, Proportion, and Quantity**
 The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (HS-LS2-1) Using the concept of orders of magnitude allows one to understand how a model at one scale relates to a model at another scale. (HS-LS2-2)

- **Stability and Change**
 Much of science deals with constructing explanations of how things change and how they remain stable. (HS-LS2-6),(HS-LS2-7)

Connections to Nature of Science

- **Scientific Knowledge is Open to Revision in Light of New Evidence**
 Most scientific knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. (HS-LS2-2) Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation. (HS-LS2-6),(HS-LS2-8)

- **Science and Engineering Practices**
 Using Mathematics and Computational Thinking Mathematical and computational thinking in K-8 experiences and progresses to algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical and/or computational representations of phenomena or design solutions to support explanations. (HS-LS2-1) Use mathematical representations of phenomena or design solutions to support and revise explanations. (HS-LS2-2) Create or revise a simulation of a phenomenon, designed device, process, or system. (HS-LS2-7) Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in K-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science. Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-6) Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS2-8)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-LS2-7)

Connections to other DCIs in this grade-band: HS.ESS2.D (HS-LS2-7),(HS-LS4-6); HS.ESS2.E (HS-LS2-1),(HS-LS2-2),(HS-LS2-7),(HS-LS4-6); HS.ESS3.A (HS-LS2-1),(HS-LS2-7), (HS-LS4-6); HS.ESS3.C (HS-LS2-2),(HS-LS2-7),(HS-LS4-6); HS.ESS3.D (HS-LS2-2),(HS-LS4-6)

Articulation across grade-bands: MS.LS1.B (HS-LS2-8); MS.LS2.A (HS-LS2-1),(HS-LS2-2),(HS-LS2-6); MS.LS2.C (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-7),(HS-LS4-6); MS.ESS2.E (HS-LS2-6); MS.ESS3.A (HS-LS2-1); MS.ESS3.C (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-7),(HS-LS4-6); MS.ESS3.D (HS-LS2-7)

Common Core State Standards Connections:

ELA/Literacy –

RST.9-10.8 Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-LS2-6),(HS-LS2-7),(HS-LS2-8)

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-8)

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-LS2-6),(HS-LS2-7),(HS-LS2-8)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-LS2-6),(HS-LS2-7),(HS-LS2-8)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS2-1),(HS-LS2-2)

WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS4-6)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-LS2-7),(HS-LS2-8)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-LS2-1),(HS-LS2-2),(HS-LS2-6),(HS-LS2-7)

MP.4 Model with mathematics. (HS-LS2-1),(HS-LS2-2)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-LS2-1),(HS-LS2-2),(HS-LS2-7)

HSS-ID.A.1 Represent data with plots on the real number line. (HS-LS2-6)

HSS-IC.A.1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population. (HS-LS2-6)

HSS-IC.B.6 Evaluate reports based on data. (HS-LS2-6)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

HS. Inheritance and Variation of Traits

HS-LS1-4. Use a model to illustrate cellular division (mitosis) and differentiation. [Clarification Statement: Emphasis should be on the outcomes of mitotic division and cell differentiation on growth and development of complex organisms and possible implications for abnormal cell division (cancer) and stem cell research.] [Assessment Boundary: Assessment does not include specific gene control mechanisms or recalling the specific steps of mitosis.]

HS-LS3-1. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. [Clarification Statement: Emphasis should be on the distinction between coding and non-coding regions of DNA.]

HS-LS3-2. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, (3) mutations caused by environmental factors and/or (4) genetic engineering. [Clarification Statement: Emphasis is on using data to support arguments for the way variation occurs including the relevant processes in meiosis and advances in biotechnology.] [Assessment Boundary: Assessment does not include recalling the specific details of the phases of meiosis or the biochemical mechanisms of the genetic changes in the process.]

HS-LS3-3. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population. [Clarification Statement: Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.]

HS-LS1-8. Use models to illustrate how human reproduction and development maintains continuity of life. [Clarification Statement: Emphasis is on structures and function of human reproductive systems, interactions with other human body systems, embryonic development, and influences of environmental factors on development.] [Assessment Boundary: Assessment does not include the details of hormonal regulation or stages of embryonic development.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in 9-12 builds on K-8 experiences and processes to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
- Ask questions that arise from examining models or a theory to clarify relationships. (HS-LS3-1)

Developing and Using Models
- Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.
- Use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-LS1-4),(HS-LS1-8)

Analyzing and Interpreting Data
- Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
- Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS3-3)

Engaging in Argument from Evidence
- Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.
- Make and defend a claim based on evidence about the natural world that reflects scientific knowledge, and student-generated evidence. (HS-LS3-2)

Disciplinary Core Ideas

LS1.A: Structure and Function
- All cells contain genetic information in the form of DNA molecules. Genes are regions in the DNA that contain the instructions that code for the formation of proteins. (second to HS-LS1-1) (Note: This Disciplinary Core Idea is also addressed by HS-LS1-1)
- (NYSED) The structures and functions of the human female reproductive system produce gametes in ovaries, allow for internal fertilization, support the internal development of the embryo and fetus in the uterus, and provide essential materials through the placenta, and nutrition through milk for the newborn. The structures and functions of the human male reproductive system produce gametes in testes and make possible the delivery of these gametes for fertilization. (HS-LS1-8)

LS1.B: Growth and Development of Organisms
- In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the whole organism. (HS-LS1-4)
- (NYSED) The continuity of life is sustained through reproduction and development. Human development, birth, and aging should be viewed as a predictable pattern of events influenced by factors such as gene expression, hormones, and the environment. (HS-LS1-8)

LS3.A: Inheritance of Traits
- Each chromosome consists of a single very long DNA molecule, and each gene on the chromosome is a particular segment of that DNA. The instructions for forming species’ characteristics are carried in DNA. All cells in an organism have the same genetic content, but the genes used (expressed) by the cell may be regulated in different ways. Not all DNA codes for a protein; some segments of DNA are involved in regulatory or structural functions, and some have no as-yet known function. (HS-LS3-1)

LS3.B: Variation of Traits
- In sexual reproduction, chromosomes sometimes swap sections during the process of meioses (cell division), thereby creating new genetic combinations and thus more genetic variation. Although DNA replication is tightly regulated and remarkably accurate, errors do occur and result in mutations, which are also a source of genetic variation. (HS-LS3-2)
- (NYSED) Environmental factors can cause mutations in genes. Only mutations in sex cells can be inherited. (HS-LS3-2)

Crosscutting Concepts

Cause and Effect
- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS3-1),(HS-LS3-2)

Scale, Proportion, and Quantity
- Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-LS3-3)

Systems and System Models
- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-LS1-4),(HS-LS1-8)

Connections to Nature of Science

Science is a Human Endeavor
- Technological advances have influenced the progress of science and science has influenced advances in technology. (HS-LS3-2),(HS-LS3-3),(New NYSED PE)
- Science and engineering are influenced by society and society is influenced by science and engineering. (HS-LS3-2),(HS-LS3-3),(HS-LS1-8)

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Advances in biotechnology have allowed organisms to be modified genetically. (HS-LS3-2)

Environmental factors also affect expression of traits, and hence affect the probability of occurrences of traits in a population. Thus the variation and distribution of traits observed depends on both genetic and environmental factors. (HS-LS3-2), (HS-LS3-3)

Connections to other DCIs in this grade-band:
- HS.LS2.A (HS-LS3-3)
- HS.LS2.C (HS-LS3-3)
- HS.LS4.B (HS-LS3-3)
- HS.LS4.C (HS-LS3-3)

Articulation across grade-bands:
- MS.LS1.A (HS-LS1-4)
- MS.LS1.B (HS-LS1-4)
- MS.LS2.A (HS-LS3-3)
- MS.LS3.A (HS-LS1-4)
- MS.LS3.B (HS-LS3-1), (HS-LS3-2), (HS-LS3-3)

Common Core State Standards Connections:
- ELA/Literacy
 - RST.11-12.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS3-1), (HS-LS3-2)
 - RST.11-12.9: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-LS3-1)
 - WHST.9-12.1: Write arguments focused on discipline-specific content. (HS-LS3-2)
 - SL.11-12.5: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-4), (HS-LS1-8)

- Mathematics
 - MP.2: Reason abstractly and quantitatively. (HS-LS3-2), (HS-LS3-3), (HS-LS1-8)
 - MP.4: Model with mathematics. (HS-LS1-4)
 - HSF-IF.C.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. (HS-LS1-4)
 - HSF-BF.A.1: Write a function that describes a relationship between two quantities. (HS-LS1-4)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

HS. Natural Selection and Evolution

Students who demonstrate understanding can:

HS-LS4-1. Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence. [Clarification Statement: Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.]

HS-LS4-2. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment. [Clarification Statement: Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and population projections.]

HS-LS4-3. Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait. [Clarification Statement: Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and co-evolution.]

HS-LS4-4. Construct an explanation based on evidence for how natural selection leads to adaptation of populations. [Clarification Statement: Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.]

HS-LS4-5. Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. [Clarification Statement: Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, introduction of invasive species, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data Analyzing data in 9-12 builds on K-8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.</td>
</tr>
<tr>
<td>• Apply concepts of statistics and probability (including determining function fits to data, slope, intercept, and correlation coefficient for linear fits) to scientific and engineering questions and problems, using digital tools when feasible. (HS-LS4-3)</td>
</tr>
<tr>
<td>Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9-12 builds on K-8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.</td>
</tr>
<tr>
<td>• Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-LS4-2),(HS-LS4-4)</td>
</tr>
<tr>
<td>Engaging in Argument from Evidence Engaging in argument from evidence in 9-12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current or historical episodes in science.</td>
</tr>
<tr>
<td>• Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-LS4-5)</td>
</tr>
<tr>
<td>Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 9-12 builds on K-8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.</td>
</tr>
<tr>
<td>• Communicate scientific information (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-LS4-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS4.A: Evidence of Common Ancestry and Diversity</td>
</tr>
<tr>
<td>• Genetic information provides evidence of evolution. DNA sequences vary among species, but there are many overlaps; in fact, the ongoing branching that produces multiple lines of descent can be inferred by comparing the DNA sequences of different organisms. Such information is also derivable from the similarities and differences in amino acid sequences and from anatomical and embryological evidence. (HS-LS4-1)</td>
</tr>
<tr>
<td>LS4.B: Natural Selection</td>
</tr>
<tr>
<td>• Natural selection occurs only if there is both (1) variation in the genetic information between organisms in a population and (2) variation in the expression of that genetic information—that is, trait variation—that leads to differences in performance among individuals. (HS-LS4-2),(HS-LS4-3)</td>
</tr>
<tr>
<td>• The traits that positively affect survival are more likely to be reproduced, and thus are more common in the population. (HS-LS4-3)</td>
</tr>
<tr>
<td>LS4.C: Adaptation</td>
</tr>
<tr>
<td>• Evolution is a consequence of the interaction of four factors: (1) the potential for a species to increase in number, (2) the genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for an environment’s limited supply of the resources that individuals need in order to survive and reproduce, and (4) the ensuing proliferation of those organisms that are better able to survive and reproduce in that environment. (HS-LS4-2)</td>
</tr>
<tr>
<td>• Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. That is, the differential survival and reproduction of organisms in a population that have an advantageous heritable trait leads to an increase in the proportion of individuals in future generations that have the trait and to a decrease in the proportion of individuals that do not. (HS-LS4-3),(HS-LS4-4)</td>
</tr>
<tr>
<td>• Adaptation also means that the distribution of traits in a population can change when conditions change. (HS-LS4-3)</td>
</tr>
<tr>
<td>• Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different conditions, and the decline—and sometimes the extinction—of some species. (HS-LS4-5)</td>
</tr>
<tr>
<td>• Species can become extinct because they can no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species’ evolution is lost. (HS-LS4-5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patterns</td>
</tr>
<tr>
<td>• Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-LS4-1),(HS-LS4-3)</td>
</tr>
<tr>
<td>Cause and Effect</td>
</tr>
<tr>
<td>• Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-LS4-2),(HS-LS4-4),(HS-LS4-5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections to Nature of Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
<tr>
<td>• Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. (HS-LS4-1),(HS-LS4-4)</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

HS-ESS1-1. Develop a model based on evidence to illustrate the life span of the Sun and the role of nuclear fusion in the Sun’s core to release energy that eventually reaches Earth in the form of radiation. [Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the Sun’s core to reach Earth. Examples of evidence for the model could include observations of the masses and lifetimes of other stars, as well as the ways that the Sun’s radiation varies due to sudden solar flares (‘space weather’), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the Sun’s nuclear fusion.]

HS-ESS1-2. Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. [Clarification Statement: Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding at an accelerated rate, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).]

HS-ESS1-3. Communicate scientific ideas about the way stars, over their life cycle, produce elements. [Clarification Statement: Emphasis is on how nucleosynthesis varies as a function of the mass of a star and the stage of its lifetime.] [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.]

HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and comets. Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, or involve calculus.]

HS-ESS1-7. Construct an explanation using evidence to support the claim that the phases of the moon, eclipses, tides and seasons change cyclically. [Clarification Statement: Emphasis is on the explanation should include how the relative positions of the moon in its orbit, Earth, and the Sun cause different phases, types of eclipses or strength of tides. Examples of evidence could include various representations of relative positions of the Sun, Earth and moon.] [Assessment Boundary: Assessment does not include mathematical computations to support explanations but rather relies on conceptual modeling using diagrams to show how celestial bodies interact to create these cyclic changes.]

The performance expectations above were developed using the following elements from the NRC Document A Framework for K-12 Science Education:

Science and Engineering Practices

Developing and Using Models
Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).
- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS1-1)
- Using Mathematical and Computational Thinking
 Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
- Use mathematical or computational representations of phenomena to describe explanations. (HS-ESS1-4)
- Constructing Explanations and Designing Solutions
 Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.
- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students’ own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS1-2),(HS-ESS1-7)
- Obtaining, Evaluating, and Communicating Information
 Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.
- Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-ESS1-3)

Disciplinary Core Ideas

ESS1A: The Universe and Its Stars
- The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years. (HS-ESS1-1)
- The study of stars’ light spectra and brightness is used to identify compositional elements of stars, their movements, and their distances from Earth. (HS-ESS1-2),(HS-ESS1-3)
- The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the universe. (HS-ESS1-2)
- Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain massive stars achieve a supernova stage and explode. (HS-ESS1-2),(HS-ESS1-3)

ESS1B: Earth and the Solar System
- Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. (HS-ESS1-4)
- (NYSED) Earth and celestial phenomena can be described by principles of relative motion and perspective. (HS-ESS1-7)

PS3.D: Energy in Chemical Processes and Everyday Life
- Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth with the help of nuclear reactions. (secondary to HS-ESS1-1)

PS5.4: Electromagnetic Radiation
- Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence of an element, even in microscopic quantities. (secondary to HS-ESS1-2)

Crosscutting Concepts

Patterns
- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality. [Assessment Boundary: Assessment does not include mathematical computations to support explanations but rather relies on conceptual modeling using diagrams to show how celestial bodies interact to create these cyclic changes.]

Scale, Proportion, and Quantity
- The significance of a phenomenon is dependent on the scale, proportion, and quantity at which it occurs. (HS-ESS1-1)
- Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-ESS1-4)

Energy and Matter
- Energy cannot be created or destroyed—only moved between one place and another through processes within systems. (HS-ESS1-2)
- In nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved. (HS-ESS1-3)

Connections to Nature of Science

Interdependence of Science, Engineering, and Technology
- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS1-2),(HS-ESS1-4)

Scientific Knowledge Assumes an Order and Consistency in Natural Systems
- Scientific knowledge is based on the assumption that natural laws operate today as they did in the past and they will continue to do so in the future. (HS-ESS1-2)
- Science assumes the universe is a vast single system in which basic laws are consistent. (HS-ESS1-2)
Connections to other DCIs in this grade-band:

<table>
<thead>
<tr>
<th>DCI</th>
<th>Corresponding DCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS.PS1.A</td>
<td>(HS-ESS1-2),(HS-ESS1-3)</td>
</tr>
<tr>
<td>HS.PS1.C</td>
<td>(HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-3)</td>
</tr>
<tr>
<td>HS.PS2.B</td>
<td>(HS-ESS1-4)</td>
</tr>
<tr>
<td>HS.PS3.A</td>
<td>(HS-ESS1-1),(HS-ESS1-2)</td>
</tr>
<tr>
<td>HS.PS3.B</td>
<td>(HS-ESS1-2), (HS-ESS1-4)</td>
</tr>
<tr>
<td>HS.PS4.A</td>
<td>(HS-ESS1-2)</td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade-bands:

<table>
<thead>
<tr>
<th>DCI</th>
<th>Corresponding DCIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS.PS1.A</td>
<td>(HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-3)</td>
</tr>
<tr>
<td>MS.PS2.A</td>
<td>(HS-ESS1-4), (HS-ESS1-5)</td>
</tr>
<tr>
<td>MS.PS2.B</td>
<td>(HS-ESS1-4)</td>
</tr>
<tr>
<td>MS.PS4.B</td>
<td>(HS-ESS1-1),(HS-ESS1-2)</td>
</tr>
<tr>
<td>MS.ESS1.A</td>
<td>(HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-3), (HS-ESS1-4)</td>
</tr>
<tr>
<td>MS.ESS1.B</td>
<td>(HS-ESS1-4)</td>
</tr>
<tr>
<td>MS.ESS2.A</td>
<td>(HS-ESS1-1)</td>
</tr>
<tr>
<td>MS.ESS2.D</td>
<td>(HS-ESS1-1)</td>
</tr>
</tbody>
</table>

Common Core State Standards Connections:

ELA/Literacy –

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RST.11-12.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS1-1),(HS-ESS1-2)</td>
</tr>
<tr>
<td>WHST.9-12.2</td>
<td>Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-ESS1-2),(HS-ESS1-3)</td>
</tr>
<tr>
<td>SL.11-12.4</td>
<td>Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation. (HS-ESS1-3),(HS-ESS1-7)</td>
</tr>
</tbody>
</table>

Mathematics –

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-3),(HS-ESS1-4)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-ESS1-1),(HS-ESS1-4)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-4)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-3),(HS-ESS1-7)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-4)</td>
</tr>
<tr>
<td>HSA-SSE.A.1</td>
<td>Interpret expressions that represent a quantity in terms of its context. (HS-ESS1-1),(HS-ESS1-2),(HS-ESS1-4)</td>
</tr>
<tr>
<td>HSA-CED.A.2</td>
<td>Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-ESS1-1),(HS-ESS1-2)</td>
</tr>
<tr>
<td>HSA-CED.A.4</td>
<td>Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-ESS1-1),(HS-ESS1-4)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. History of Earth

Students who demonstrate understanding can:

HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples of evidence could include that the age of oceanic crust increases with distance from mid-ocean ridges as a result of plate spreading and that the North American continental crust contains a much older central ancient core compared to the surrounding continental crust as a result of complex and numerous plate interactions.]

HS-ESS1-6. Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. [Clarification Statement: Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence could include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth's rocks and minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.]

HS-ESS2-1. Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive processes (such as volcanism, tectonic uplift, and deposition) and destructive processes (such as weathering, subduction, and coastal erosion).] [Assessment Boundary: Assessment does not include recalling the details of the formation of specific geographic features of Earth's surface.]

The performance expectations above were developed using the following elements from the NRC Document A Framework for K-12 Science Education:

Science and Engineering Practices

- Developing and Using Models
 - Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).
 - Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1)

- Constructing Explanations and Designing Solutions
 - Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.
 - Apply scientific reasoning to link evidence to the claims to assess the extent to which the reasoning and data support the explanation or conclusion. (HS-ESS1-6)

- Engaging in Argument from Evidence
 - Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s). Arguments may also come from current scientific or historical episodes in science.
 - Evaluate evidence behind currently accepted explanations or solutions to determine the merits of arguments. (HS-ESS1-5)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth
- Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)
- Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions of years. Studying these objects can provide information about Earth's formation and early history. (HS-ESS1-6)

ESS2.A: Earth Materials and Systems
- Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1) (Note: This Disciplinary Core Idea is also addressed by HS-ESS2-2.)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5),(HS-ESS2-1)
- Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth's crust. (ESS2.B Grade 8 GBE) (HS-ESS2-1)

PS1.C: Nuclear Processes
- (NYSED) Spontaneous radioactive decay follows a characteristic exponential decay law allowing an element's half-life to be used for radiometric dating of rocks and other materials. (secondary to HS-ESS1-5),(secondary to HS-ESS1-6)

Crosscutting Concepts

- Patterns
 - Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS1-6)
 - Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS2-1)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1
- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS1-5),(HS-ESS1-6)

RST.11-12.8
- Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS1-5),(HS-ESS1-6)

WHST.9-12.1
- Write arguments focused on discipline-specific content. (HS-ESS1-6)

WHST.9-12.2
- Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-ESS1-5)

SL.11-12.5
- Make strategic use of digital media (e.g., textual, graphical, video, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence to add interest. (HS-ESS1-5)

Mathematics –

MP.2
- Reason abstractly and quantitatively. (HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)

MP.4
- Model with mathematics. (HS-ESS1-5)

HSN-Q.A.1
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSN-Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling (HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)</td>
<td>(HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities (HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)</td>
<td>(HS-ESS1-5),(HS-ESS1-6),(HS-ESS2-1)</td>
</tr>
<tr>
<td>HSF-IF.B.5</td>
<td>Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. (HS-ESS1-6)</td>
<td>(HS-ESS1-6)</td>
</tr>
<tr>
<td>HSS-ID.B.6</td>
<td>Represent data on two quantitative variables on a scatter plot, and describe how those variables are related. (HS-ESS1-6)</td>
<td>(HS-ESS1-6)</td>
</tr>
</tbody>
</table>

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Earth’s Systems

Students who demonstrate understanding can:

HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to Earth’s systems. [Clarification Statement: Examples of data could include descriptions of climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples of data could also include descriptions of other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how damned rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]

HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional view of Earth’s core with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Rocks and minerals can be identified and classified using various tests and protocols that determine their physical and chemical properties. Examples of evidence could include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]

HS-ESS2-5. Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. [Clarification Statement: Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and systems and the geologic record as eminently known as the rock cycle. Examples of mechanical investigations could include stream transportation (erosion) and deposition using a stream table, infiltration and runoff by measuring permeability and porosity of different materials, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations could include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).]

HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. [Clarification Statement: Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]

HS-ESS2-7. Develop an argument based on evidence about the coevolution of Earth’s systems and life on Earth. [Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples could include how the outgassing of water from Earth’s interior caused the development of Earth’s early oceans leading to the evolution of microorganisms and stomatolites; how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines that in turn provided habitats for the evolution of new life forms. [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.]

Science and Engineering Practices

Developing and Using Models
Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).

- Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-3); (HS-ESS2-6)

Planning and Carrying Out Investigations
Planning and carrying out investigations in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical, and empirical models.

- Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-ESS2-5)

Analyzing and Interpreting Data
Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.

- Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-2)

Engaging in Argument from Evidence
Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about the natural and designed world(s).

- Argue from evidence to support claims, and counter-arguments based on data and evidence. (HS-ESS2-7)

Disciplinary Core Ideas

ESS2.A: Earth Materials and Systems
- Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes (HS-ESS2-2)
- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of material due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)

ESS2.B: Plate Tectonics and Large-Scale System Interactions
- (NS) Residual heat from Earth’s formation and the radioactive decay of unstable isotopes in Earth’s interior continually generate energy that is absorbed by Earth’s mantle and crust, driving mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)
- (NS) Minerals are the building blocks of igneous, metamorphic, and sedimentary rocks and can be identified using physical and chemical characteristics. These rock types are evidence of stages of constant recycling of Earth material by surface processes and convection currents in the mantle. (HS-ESS2-3)

ESS2.C: The Roles of Water in Earth’s Surface Processes
- The abundance of liquid water on Earth’s surface and its unique combination of physical and chemical properties are essential to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy, transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. (NS) (HS-ESS2-5)

ESS2.D: Weather and Climate
- The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-2)
- Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen. (HS-ESS2-3); (HS-ESS2-7)
- Changes in the atmosphere commonly known to be due to the human activity have

Crosscutting Concepts

Energy and Matter
- The total amount of energy and matter in closed systems is conserved. (HS-ESS2-6)
- Energy drives the cycling of matter within and between systems. (HS-ESS2-3)

Structure and Function
- The functions and properties of natural and designed objects and systems can be inferred from their overall structure, the way their components are shaped and used, and the molecular substructures of its various materials. (HS-ESS2-5)

Stability and Change
- Much of science deals with constructing explanations of how things change and how they remain stable. (HS-ESS2-7)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS2-2)

Connections to Technology, Engineering, and Applications of Science

Interdependence of Science, Engineering, and Technology
- Science and engineering complement each other in the cycle known as research and development (R&D). Many R&D projects may involve scientists, engineers, and others with wide ranges of expertise. (HS-ESS2-3)

Influence of Engineering, Technology, and Science on Society and the Natural World
- New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS2-2)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

- Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)
- Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)

ESS2.E: Biogeology
- The many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it. (HS-ESS2-7)

PS4.A: Wave Properties
Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet.

Connections to other DCIs in this grade-band:
- HS.PS1.A (HS-ESS2-5),(HS-ESS2-6); HS.PS1.B (HS-ESS2-5),(HS-ESS2-6); HS.PS2.B (HS-ESS2-3); HS.PS3.A (HS-ESS2-3), (HS-ESS2-5); HS.PS3.D (HS-ESS2-3),(HS-ESS2-6); HS.PS4.B (HS-ESS2-2); HS.LS1.C (HS-ESS2-6); HS.LS2.A (HS-ESS2-7); HS.LS2.B (HS-ESS2-2),(HS-ESS2-6); HS.LS2.C (HS-ESS2-2); HS.LS4.A (HS-ESS2-7); HS.LS4.B (HS-ESS2-7); HS.LS4.C (HS-ESS2-7); HS.LS4.D (HS-ESS2-2),(HS-ESS2-7); HS.ESS3.C (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6); HS.ESS3.D (HS-ESS2-2),(HS-ESS2-6)

Articulation of DCIs across grade-bands:
- MS.PS1.A (HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6); MS.PS1.B (HS-ESS2-3); MS.PS2.B (HS-ESS2-3); MS.PS3.A (HS-ESS2-3); MS.PS3.B (HS-ESS2-3); MS.PS3.D (HS-ESS2-2),(HS-ESS2-6); MS.PS4.B (HS-ESS2-2),(HS-ESS2-5),(HS-ESS2-6); MS.LS1.A (HS-ESS2-7); MS.LS4.A (HS-ESS2-7); MS.LS4.B (HS-ESS2-7); MS.LS4.C (HS-ESS2-7); MS.LS4.D (HS-ESS2-2),(HS-ESS2-7); MS.ESS2.B (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6); MS.ESS2.C (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-5); MS.ESS2.D (HS-ESS2-2); MS.ESS2.D (HS-ESS2-2), (HS-ESS2-5); MS.ESS3.C (HS-ESS2-2),(HS-ESS2-6); MS.ESS3.D (HS-ESS2-2),(HS-ESS2-6)

Common Core State Standards Connections:

ELA/Literacy –
- RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2),(HS-ESS2-3)
- RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)
- WHST.9-12.1 Write arguments focused on discipline-specific content. (HS-ESS2-7)
- WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-ESS2-5)
- SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-3)

Mathematics –
- MP.2 Reason abstractly and quantitatively. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6)
- MP.4 Model with mathematics. (HS-ESS2-3),(HS-ESS2-6)
- HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-6)
- HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-3),(HS-ESS2-6)
- HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-2),(HS-ESS2-3),(HS-ESS2-5),(HS-ESS2-6)

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
HS. Weather and Climate

Students who demonstrate understanding can:

- **HS-ESS2-4.** Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.
 - **Clarification Statement:** Examples of the causes of climate change could include those that differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition and plate tectonic movement.
 - **Assessment Boundary:** Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.

- **HS-ESS3-5.** Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
 - **Clarification Statement:** Examples of evidence could include both data and climate model outputs that are used to describe climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).
 - **Assessment Boundary:** Assessment is limited to one example of a climate change and its associated impacts.

- **HS-ESS2-8.** Evaluate data and communicate information to explain how the movement and interactions of air masses result in changes in weather conditions.
 - **Clarification Statement:** Examples of evidence sources could include station models, surface weather maps, satellite images, radar, and accepted forecast models. Emphasis should focus on communicating how the uneven heating of Earth’s surface and prevailing global winds drive the movement of air masses and their corresponding circulation patterns, the interaction of different air masses at frontal boundaries, and resulting weather phenomena.

Science and Engineering Practices

Developing and Using Models

- Model in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).
 - Use a model to provide mechanistic accounts of phenomena.

Analyzing and Interpreting Data

- Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
 - Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution.

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in 9–12 builds on K–8 experiences and progresses to evaluating the validity and reliability of the claims, methods, and designs.
 - Communicate scientific ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically).

Disciplinary Core Ideas

ESS1.B: Earth and the Solar System
- Cyclic changes in the shape of Earth’s orbit around the sun, together with changes in the tilt of the planet’s axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes.
- **ESS2.A: Earth Materials and Systems**
 - The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun’s energy output or Earth’s orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.
- **ESS2.D: Weather and Climate**
 - The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space.
 - **ESS3.D: Global Climate Change**
 - Though the magnitudes of human impacts are greater than they have ever been, so too are human abilities to model, predict, and manage current and future impacts.

Crosscutting Concepts

Patterns
- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena.
- **Effect and Cause**
 - Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
- **Stability and Change**
 - Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible.

Connections to Nature of Science

Scientific Investigations Use a Variety of Methods
- Science investigations use diverse methods and do not always use the same set of procedures to obtain data.
- New technologies advance scientific knowledge.

Scientific Knowledge is Based on Empirical Evidence
- Science knowledge is based on empirical evidence.
- Science arguments are strengthened by multiple lines of evidence supporting a single explanation.

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1
- Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the authors make and to any gaps or inconsistencies in the account. (HS-ESS3-5, HS-ESS2-9)

RST.11-12.2
- Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS3-5)

RST.11-12.7
- Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ESS3-5, HS-ESS2-8)

SL.11-12.5
- Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS3-4)

Mathematics –

MP.2
- Reason abstractly and quantitatively. (HS-ESS2-4, HS-ESS3-5, HS-ESS2-8)

MP.4
- Model with mathematics. (HS-ESS2-4)

HSN-Q.A.1
- Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the “Disciplinary Core Ideas” section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>HSN-Q.A.2</th>
<th>Interpret the scale and the origin in graphs and data displays. (HS-ESS2-4),(HS-ESS3-5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-4),(HS-ESS3-5),(HS-ESS2-8)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

HS. Human Sustainability

Students who demonstrate understanding can:

HS-ESS3-1. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
Clarification Statement: Examples of key natural resources could include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards could include those from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as blizzards, hurricanes, tornadoes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations could include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.

HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.*
Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples could include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.

HS-ESS3-3. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
Clarification Statement: Examples of factors that affect the management of natural resources could include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability could include agricultural efficiency, levels of conservation, and urban planning. [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.]

HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.*
Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could include practices ranging from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean.).

HS-ESS3-6. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified in response to human activity.*
Clarification Statement: Examples of Earth systems to be considered could include the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations. [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-ESS3-3)
- Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-ESS3-6)

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K-8 experiences and progressions to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific knowledge, principles, and theories.

- Construct an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, simulations, peer review) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. (HS-ESS3-1)

Engaging in Argument from Evidence

Engaging in argument from evidence in 9–12 builds on K-8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science.

- Evaluate competing design solutions to a real-world problem based on scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, ethical considerations). (HS-ESS3-2)

Disciplinary Core Ideas

ESS2.D: Weather and Climate

- Current models predict that, although future regional climate changes will be complex and varied, average global temperatures will continue to rise. The outcomes predicted by global climate models strongly depend on the amounts of human-generated greenhouse gases added to the atmosphere each year and by the ways in which these gases are absorbed by the ocean and biosphere. (secondary to HS-ESS3-6)

ESS3.A: Natural Resources

- Resource availability has guided the development of human society. (HS-ESS3-1)
- All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. (HS-ESS3-2)

ESS3.B: Natural Hazards

- Natural hazards and other geologic events have shaped the course of human history; [they] have significantly altered the sizes of human populations and have driven human migrations. (HS-ESS3-1)

ESS3.C: Human Impacts on Earth Systems

- The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)
- Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that reverse ecosystem degradation. (HS-ESS3-4)

ESS3.D: Global Climate Change

- Through computer simulations and other studies, important discoveries are still being made about how the ocean, the atmosphere, and the biosphere interact and are modified in response to human activity. (HS-ESS3-6)

ETS1.B: Developing Possible Solutions

- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2),(secondary to HS-ESS3-4)

Crosscutting Concepts

Cause and Effect

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1)

Systems and System Models

- When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-6)

Stability and Change

- Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3-3)
- Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS3-4)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- Modern civilization depends on major technological systems. (HS-ESS3-1),(HS-ESS3-3)
- Engineers continuously modify these systems to increase benefits while decreasing costs and risks. (HS-ESS3-2),(HS-ESS3-4)
- New technologies can have deep impacts on society and the environment, including some that were not anticipated. (HS-ESS3-3)
- Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS3-2)

Connections to Nature of Science

Science is a Human Endeavor

*The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
New York State P-12 Science Learning Standards

<table>
<thead>
<tr>
<th>Connections to other DCIs in this grade-band:</th>
<th>HS.PS1.B (HS-ESS3-3); HS.PS3.B (HS-ESS3-2); HS.PS3.D (HS-ESS3-2); HS.LS2.A (HS-ESS3-2),(HS-ESS3-3); HS.LS2.B (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-6); HS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS4.D (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.ESS2.A (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Articulation of DCIs across grade-bands:</td>
<td>MS.PS1.B (HS-ESS3-3); MS.PS3.D (HS-ESS3-2); MS.LS2.A (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); MS.LS2.B (HS-ESS3-2),(HS-ESS3-3); MS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); MS.LS4.C (HS-ESS3-3); MS.LS4.D (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); MS.ESS2.A (HS-ESS3-1),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); MS.ESS2.C (HS-ESS3-6); MS.ESS3.A (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); MS.ESS3.B (HS-ESS3-1),(HS-ESS3-4); MS.ESS3.C (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); MS.ESS3.D (HS-ESS3-4),(HS-ESS3-6)</td>
</tr>
<tr>
<td>Common Core State Standards Connections:</td>
<td></td>
</tr>
<tr>
<td>ELA/Literacy –</td>
<td></td>
</tr>
<tr>
<td>RST.11-12.1</td>
<td>Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-4)</td>
</tr>
<tr>
<td>RST.11-12.2</td>
<td>Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS3-2),(HS-ESS3-4)</td>
</tr>
<tr>
<td>WHST.9-12.2</td>
<td>Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-ESS3-1)</td>
</tr>
<tr>
<td>Mathematics –</td>
<td></td>
</tr>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-ESS3-3),(HS-ESS3-6)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-6)</td>
</tr>
<tr>
<td>HSN-Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-6)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-6)</td>
</tr>
</tbody>
</table>

The performance expectations marked with an asterisk integrate traditional science content with engineering through a Practice or Disciplinary Core Idea. The text in the "Disciplinary Core Ideas" section is reproduced verbatim from A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas unless it is preceded by (NYSED).
Students who demonstrate understanding can:

HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Science and Engineering Practices

Asking Questions and Defining Problems
- Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
 - Analyze complex real-world problems by specifying criteria and constraints for successful solutions. (HS-ETS1-1)

Using Mathematics and Computational Thinking
- Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
 - Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems. (HS-ETS1-4)

Constructing Explanations and Designing Solutions
- Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.
 - Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-2)
 - Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-3)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems
- Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1)
- Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1)

ETS1.B: Developing Possible Solutions
- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3)
- Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)

ETS1.C: Optimizing the Design Solution
- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-1),(HS-ETS1-3)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1),(HS-ETS1-3)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-1),(HS-ETS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-ETS1-1),(HS-ETS1-3),(HS-ETS1-4)

MP.4 Model with mathematics. (HS-ETS1-1),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)

The performance expectations above were developed using the following elements from the NRC document A Framework for K–12 Science Education:

Science and Engineering Practices

- Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

Mathematical and computational thinking

- Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.

Constructing explanations and designing solutions

- Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.

- Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

- Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Disciplinary Core Ideas

- Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them.

- Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities.

- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.

- Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.

- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.

Crosscutting Concepts

- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions— including energy, matter, and information flows— within and between systems at different scales.

New York State P-12 Science Learning Standards

New York State P-12 Science Learning Standards